BACKGROUND Gastric cancer(GC)is a relatively frequent clinical phenomenon,referring to ma-lignant tumors emerging in the gastric mucosal epithelial cells.It has a high mor-bidity and mortality rate,posing a significan...BACKGROUND Gastric cancer(GC)is a relatively frequent clinical phenomenon,referring to ma-lignant tumors emerging in the gastric mucosal epithelial cells.It has a high mor-bidity and mortality rate,posing a significant threat to the health of patients.Hence,how to diagnose and treat GC has become a heated topic in this research field.AIM To discuss the effectiveness and safety of nab-paclitaxel in combination with oxaliplatin and S-1(P-SOX)for the treatment of GC,and to analyze the factors that may influence its outcomes.METHODS A total of 219 eligible patients with advanced GC,who were treated at Qinghai University Affiliated Hospital Gastrointestinal Oncology between January 2018 and March 2020,were included in the study.Among them,149 patients received SOX regimen and 70 patients received S-1 regimen.All patients underwent both preoperative and postoperative chemotherapy consisting of 2-4 cycles each,totaling 6-8 cycles,along with parallel D2 radical surgical treatment.The patients were followed up for a period of three years or until reaching the event endpoint.RESULTS The short-term and long-term efficacy of the P-SOX group was significantly higher than that of the SOX group,and the safety was manageable.Cox multivariate analysis revealed that progression-free survival was associated with perioperative chemotherapy efficacy,tumor diameter≤2cm,high differentiation,and early cTNM(T stands for invasion depth;N stands for node metastasis;M stands for distant invasion)stage.CONCLUSION In comparison to the SOX regimen,the P-SOX regimen demonstrates improved short-term and long-term efficacy with tolerable adverse reactions.It is anticipated that the P-SOX regimen will emerge as a first-line chemotherapy option for GC.Patients with GC who receive effective perioperative chemotherapy(Response Evaluation Criteria in Solid Tumors 1.1,Tumor Regression Grade),have a tumor diameter≤2cm,exhibit high degree of differentiation,and are at an early cTNM stage show better prognosis.展开更多
The semisolid slurry of the A356 aluminum alloy was prepared by self-inoculation method(SIM),the effects of melt treatment temperatures and isothermal holding parameters on water-quenched microstructures of A356 alumi...The semisolid slurry of the A356 aluminum alloy was prepared by self-inoculation method(SIM),the effects of melt treatment temperatures and isothermal holding parameters on water-quenched microstructures of A356 aluminum alloy semisolid slurry were investigated,and the solidification behavior of the remaining liquid phase(secondary solidification)was analyzed.The results indicate that the melt treatment temperature has significant effects on the final semisolid microstructures.The semisolid slurry which is suitable for the rheological forming can be produced when the melt treatment temperature is between 680 and 690°C.During the isothermal holding process,the growth rate of the primary particles conforms to the dynamic equation of Dt 3-Do3=Kt,and the coarsening rate of the primary particles is the fastest when the isothermal holding temperature is 600°C.Additionally,the isothermal holding time also has obvious effect on the secondary solidification microstructures.The secondary particles are the smallest and roundest when the isothermal holding time is 3 min.The amount of the secondary particles gradually increases with the increase of isothermal holding temperature,and the eutectic reaction therefore is confined into small intergranular areas,contributing to the compactness of the final solidified eutectic structures.展开更多
Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study...Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si(mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and temperature on the microstructure of the primary Si-phase during the mixing of molten Al and Al-30%Si was studied. The results showed that when the diameter of the small crucible bottom hole is 16 mm, a higher mass mixing rate 0.217 kg·s-1 would results in a lower stream velocity 0.414 m·s-1. Conversely a lower mass mixing rate 0.114 kg·s-1(the diameter of the small crucible bottom hole is 8 mm) would result in a higher fluid stream velocity 0.879 m·s-1. A lower mass mixing rate would be better to refine the primary Si than a higher mass mixing rate. Meanwhile, the morphology and distribution of primary Si could also be improved. Especially, when Al-30%Si alloy at 820 °C was mixed with pure Al at 670 °C in the case of a mass mixing rate of 0.114 kg·s-1 and a pouring temperature of 680 °C, the average size of the primary Si phase would be only 18.2 μm. Its morphology would mostly be octahedral and the primary Si would distribute uniformly in the matrix microstructure. The lower mass mixing rate(0.114 kg·s-1) will enhance the broken tendency of Al-30%Si steam and the mixing agitation of resultant melt, so the primary Si phase can be better refined.展开更多
Effects of solid solution treatment and cooling on the morphology of long period stacking order(LPSO)phase and precipitation hardening behavior of Mg?2Dy?0.5Ni(molar fraction,%)alloy were investigated.Microstructures ...Effects of solid solution treatment and cooling on the morphology of long period stacking order(LPSO)phase and precipitation hardening behavior of Mg?2Dy?0.5Ni(molar fraction,%)alloy were investigated.Microstructures of the as-cast alloy mainly consisted ofα-Mg phase,bamboo-like Mg12DyNi phase with LPSO structure distributed between dendrites and small amounts of cubic Dy phases.During solid solution treatment at565oC for12h and subsequent different cooling conditions,dot-shaped,block,fine lamellar and rod-shaped LPSO phases precipitate in Mg matrix,respectively.For continuous cooling conditions(furnace and air cooling),the fine lamellar LPSO phase generally forms in grain interior and its volume fraction increases and block LPSO phase coarsens with increasing cooling time.For discontinuous cooling conditions(air cooling after furnace cooling to415and265°C),the dot-shaped LPSO grows into the rod-shaped phase,which results in an decrease of cooling hardening behavior of alloy.展开更多
In the present work, 7075 aluminum alloy(Al-Zn-Mg-Cu) was produced by both conventional casting(CC) and controlled diffusion solidification(CDS) methods. Each sample was subjected to different heat-treatment condition...In the present work, 7075 aluminum alloy(Al-Zn-Mg-Cu) was produced by both conventional casting(CC) and controlled diffusion solidification(CDS) methods. Each sample was subjected to different heat-treatment conditions: as-cast, T4, and T6;and their microstructural and mechanical properties were investigated by optical microscopy(OM), scanning electron microscopy(SEM) and X-ray diffractometry(XRD). It was found that CDS promoted the formation of non-dendritic primary α-Al phase and reduced shrinkage porosity, thus resulting in improved mechanical properties. In addition, the eutectic phase of the CDS samples mainly consisted of T(Al-ZnMg-Cu) phase, which manifested a well-developed lamellar eutectic structure. However, in the CC samples, the T(Al-Zn-Mg-Cu) phase was composed of rod-like eutectics. Moreover, the θ(Al2 Cu) eutectic contents in the CC samples were greater than those in the CDS samples. Each element in the CC samples had an obvious change in the grain boundary, whereas the change in element content in the CDS samples was gradual. Therefore, the non-dendritic morphology of the primary phase and the presence of rod-like eutectics in the matrix of the CDS samples led to enhanced tensile strength and elongation under different heat treatment conditions.展开更多
Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semis...Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semisolid slurry of A356 aluminum alloy can be prepared by self-inoculation method at 600℃. Primary a-AI particles with fine and spherical morphologies are uniformly distributed when the isothermal holding time of slurry is 3 min. Liquid phase segregation occurs during rheo-diecasting process of semisolid slurry and the primary particles (α1) show obvious plastic deformation in the area of high stress and low cooling rate. A small amount of dendrites resulting from the relatively low temperature of the shot chamber at the initial stage of secondary solidification are fragmented as they pass through the in-gate during the mould filling process. The amount of dendrite fragments decreases with the increase of filling distance. During the solidification process of the remaining liquid, the nucleation rate of secondary particles (α2) increases with the increase of cooling rate, and the content of Si in secondary particles (α2) are larger than primary particles (α1). With the increase of cooling rate, the content of Si in secondary particles (α2) gradually increases. The morphologies of eutectic Si in different parts of die casting are noticeably different. The low cooling rate in the first filling positions leads to coarse eutectic structures, while the high cooling rate in the post filling positions promotes small and compact eutectic structures.展开更多
The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of M...The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of Mg-Zn alloy. The Mg-6Zn magnesium alloys microalloyed with varying Cu content(0, 0.8, 1.5, 2.0 and 2.5wt.%) were fabricated by permanent mould casting, and the effects of Cu content on the microstructure and mechanical properties of as-cast Mg-6Zn alloys were studied using OM, SEM, XRD and tensile tests at room temperature. The obtained results show that the addition of Cu not only can refine the grains effectively, but also can modify the eutectic morphology and improve the mechanical properties of the alloys. The main phases of the studied alloys include α-Mg, MgZn_2, Mg_2Cu and CuMgZn. When the content of Cu exceeds 0.8wt.%, Mg_2Cu phase appears. Meanwhile, the eutectic morphology is modified into dendritic shape or lamellar structure, which has an adverse effect on the tensile properties. Furthermore, among the investigated alloys, the alloy containing 0.8% Cu shows an optimalultimate tensile strength of 196 MPa, while the alloy with 1.5wt.% Cu obtains an excellent elongation of 7.22%. The experimental alloys under different Cu contents show distinguishing fracture behaviors: the fracture of the alloy with 0.8wt.% Cu reveals a mixed mode of inter-granular and quasi-cleavage, while in other investigated alloys, the fracture behaviors are dominated by cleavage fracture.展开更多
This paper presents some research information on the effects of Zn, Cu and Ni on the microstructure and mechanical properties of as-cast Mg-2Dy(at.%) alloys. The Mg-2Dy alloy is composed of α-Mg and Mg24Dy5 phases. W...This paper presents some research information on the effects of Zn, Cu and Ni on the microstructure and mechanical properties of as-cast Mg-2Dy(at.%) alloys. The Mg-2Dy alloy is composed of α-Mg and Mg24Dy5 phases. With the addition of 0.5at.%Zn, 0.5at.%Cu and 0.5at.%Ni, respectively, besides α-Mg, the long period stacking order(LPSO) phases containing Zn, Cu, and Ni precipitated in the α-Mg interdentritic boundary. The addition of Ni effectively refined the dendrite arm spacing. The as-cast Mg-2Dy-0.5Ni alloy exhibited the best tensile strengths and elongation. The better mechanical properties were mainly attributed to small secondry dendrite arm spacing(SDAS) and high volume fraction of LPSO phases.展开更多
In this study,the theory of minimum detectable activity concentration(MDAC)for airborne gamma-ray spectrometry(AGS)was derived,and the relationship between the MDAC and the intrinsic effi-ciency of a scintillation cou...In this study,the theory of minimum detectable activity concentration(MDAC)for airborne gamma-ray spectrometry(AGS)was derived,and the relationship between the MDAC and the intrinsic effi-ciency of a scintillation counter,volume,and energy res-olution of scintillation crystals,and flight altitude of an aircraft was investigated.To verify this theory,experi-mental devices based on NaI and CeBr 3 scintillation counters were prepared,and the potassium,uranium,and thorium contents in calibration pads obtained via the stripping ratio method and theory were compared.The MDACs of AGS under different conditions were calculated and analyzed using the proposed theory and the Monte Carlo method.The relative errors found via a comparison of the experimental and theoretical results were less than 4%.The theory of MDAC can guide the work of AGS in probing areas with low radioactivity.展开更多
Objective:To study the potential mechanism of Huangqi Guizhi Wuwu Decoction in the treatment of cervical spondylosis based on the network pharmacological method,and to provide a basis for clinical application and phar...Objective:To study the potential mechanism of Huangqi Guizhi Wuwu Decoction in the treatment of cervical spondylosis based on the network pharmacological method,and to provide a basis for clinical application and pharmacological research.Methods:TCMSP search was used to screen the main active compounds and related action targets of Huangqi Guizhi Wuwu Decoction,the standard names of action targets were obtained through the Uniprot database,and the"drug-target"interaction network was constructed by using Cytoscape3.6.1 software.The related targets of cervical spondylosis were obtained by searching GeneCards,OMIM,DisGeNET,and CTD databases,and the disease targets and drug targets were mapped by the Venny platform,and the intersection genes of them were the potential targets for drug treatment of this disease.Then,the intersection genes were input into the STRING database and Cytoscape 3.6.1 software,and the protein-protein interactions(PPI)network of"drug-disease intersection targets"was constructed,and we screened the core targets.Finally,GO biological function analysis and KEGG signaling pathway analysis of core targets were carried out through the DAVID database.Results:According to the screening conditions,74 effective compounds and 138 drug action targets of Huangqi Guizhi Wuwu Decoction were obtained,12179 genes related to cervical spondylosis were obtained,and the Venny platform analysis obtained 105 intersecting targets.With visual network processing by Cytoscape software,33 core targets were obtained by analyzing and calculating the core target degree values,which were JUN,PTGS2,NR3C1,TNF,IL6,TP53,EGFR,VEGFA,NOS3,IL1B,and so on.GO analysis showed that there were 133 items(P<0.05),involving adrenergic receptor activation,neurotransmitter receptor activation,nuclear receptor activation,catecholamine binding,etc.KEGG analysis obtained a total of 139 pathways(P<0.05),involving IL-17 signaling pathway,and tumor necrosis factor signaling pathway,relaxin signaling pathway,AGE-RAGE signaling pathway of diabetic complications,fluid shear stress,and atherosclerosis.Conclusion:the active components in Huangqi Guizhi Wuwu decoction may act on the core targets such as JUN,PTGS2,NR3C1,TNF,IL6,TP53,VEGFA through IL-17 signal pathway,tumor necrosis factor signal pathway,and AGE-RAGE signal pathway of diabetic complications,and exert their therapeutic effects.The research results can provide a basis for future basic and clinical research.展开更多
A hypereutectic Al-3Fe(wt.%)alloy was subjected by rheo-extrusion,and the effect of sub-rapid cooling and shear deformation on the refinement of Fe-rich phase was investigated.The results showed that both the primary ...A hypereutectic Al-3Fe(wt.%)alloy was subjected by rheo-extrusion,and the effect of sub-rapid cooling and shear deformation on the refinement of Fe-rich phase was investigated.The results showed that both the primary Fe-rich phase and eutectic Fe-rich phase in the solidified Al-Fe alloy were finer than the platelike Fe-rich phase in the as-cast Al-Fe alloy with the same content of Fe.The solidified Al-Fe alloy was subjected to three stages of shear deformation,and both the primary Fe-rich phase and eutectic Fe-rich phase were fractured and the average length was refined to 400 nm,while Fe-rich phase in the as-cast Al-3Fe(wt.%)alloy was platelike and its average length was 40 pm.The tensile strength and elongation of the hypereutectic Al-3Fe(wt.%)alloy containing nanosized Fe-rich phase were 162 MPa and 25.78%while those of the as-cast AI-3Fe(wt.%)alloy containing coarse platelike Fe-rich phase were 102 MPa and 16.84%,respectively.In the refineme nt of Fe-rich phase in hypereutectic Al-Fe alloy during rheo-extrusion,the three stages of shear deformation contributed more than sub-rapid cooling.展开更多
Microstructural evolution and age-hardening behavior of Mg-2 Dy-6 Zn(at%)alloy during solid-solution and aging treatment were investigated.The microstructure of as-cast alloy is composed of a-Mg,Mg3 DyZn6(Ⅰ)phase,Mg3...Microstructural evolution and age-hardening behavior of Mg-2 Dy-6 Zn(at%)alloy during solid-solution and aging treatment were investigated.The microstructure of as-cast alloy is composed of a-Mg,Mg3 DyZn6(Ⅰ)phase,Mg3 Dy2 Zn3(W)phase,Mg(Zn,Dy)phase and a small amount of Mg0.97Zn0.03 phases.After solid-solution treatment(480℃,12 h),all the I phases and most W phases dissolve into a-Mg matrix and the remainder W phases transform into Mg(Dy,Zn)phase and MgDy3 phase.During aging treatment,I phase and small amounts of W phases co-precipitate from α-Mg matrix,respectively.The alloy exhibits a peak hardness of HV 77.5 at 200 ℃ for 8 h.The excellent age-hardening behavior of alloy is mainly attributed to the co-precipitation strengthening of I and W phases.展开更多
基金Supported by The Department of Science and Technology of Qinghai Province,No.2018-SF-113"Kunlun Talents-Plateau Famous Doctors"Project in Qinghai Province.
文摘BACKGROUND Gastric cancer(GC)is a relatively frequent clinical phenomenon,referring to ma-lignant tumors emerging in the gastric mucosal epithelial cells.It has a high mor-bidity and mortality rate,posing a significant threat to the health of patients.Hence,how to diagnose and treat GC has become a heated topic in this research field.AIM To discuss the effectiveness and safety of nab-paclitaxel in combination with oxaliplatin and S-1(P-SOX)for the treatment of GC,and to analyze the factors that may influence its outcomes.METHODS A total of 219 eligible patients with advanced GC,who were treated at Qinghai University Affiliated Hospital Gastrointestinal Oncology between January 2018 and March 2020,were included in the study.Among them,149 patients received SOX regimen and 70 patients received S-1 regimen.All patients underwent both preoperative and postoperative chemotherapy consisting of 2-4 cycles each,totaling 6-8 cycles,along with parallel D2 radical surgical treatment.The patients were followed up for a period of three years or until reaching the event endpoint.RESULTS The short-term and long-term efficacy of the P-SOX group was significantly higher than that of the SOX group,and the safety was manageable.Cox multivariate analysis revealed that progression-free survival was associated with perioperative chemotherapy efficacy,tumor diameter≤2cm,high differentiation,and early cTNM(T stands for invasion depth;N stands for node metastasis;M stands for distant invasion)stage.CONCLUSION In comparison to the SOX regimen,the P-SOX regimen demonstrates improved short-term and long-term efficacy with tolerable adverse reactions.It is anticipated that the P-SOX regimen will emerge as a first-line chemotherapy option for GC.Patients with GC who receive effective perioperative chemotherapy(Response Evaluation Criteria in Solid Tumors 1.1,Tumor Regression Grade),have a tumor diameter≤2cm,exhibit high degree of differentiation,and are at an early cTNM stage show better prognosis.
基金Project(51464031)supported by the National Natural Science Foundation of China
文摘The semisolid slurry of the A356 aluminum alloy was prepared by self-inoculation method(SIM),the effects of melt treatment temperatures and isothermal holding parameters on water-quenched microstructures of A356 aluminum alloy semisolid slurry were investigated,and the solidification behavior of the remaining liquid phase(secondary solidification)was analyzed.The results indicate that the melt treatment temperature has significant effects on the final semisolid microstructures.The semisolid slurry which is suitable for the rheological forming can be produced when the melt treatment temperature is between 680 and 690°C.During the isothermal holding process,the growth rate of the primary particles conforms to the dynamic equation of Dt 3-Do3=Kt,and the coarsening rate of the primary particles is the fastest when the isothermal holding temperature is 600°C.Additionally,the isothermal holding time also has obvious effect on the secondary solidification microstructures.The secondary particles are the smallest and roundest when the isothermal holding time is 3 min.The amount of the secondary particles gradually increases with the increase of isothermal holding temperature,and the eutectic reaction therefore is confined into small intergranular areas,contributing to the compactness of the final solidified eutectic structures.
基金supported by the National Natural Science Foundation of China(Grant Nos.51064017 and 51464031)
文摘Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si(mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and temperature on the microstructure of the primary Si-phase during the mixing of molten Al and Al-30%Si was studied. The results showed that when the diameter of the small crucible bottom hole is 16 mm, a higher mass mixing rate 0.217 kg·s-1 would results in a lower stream velocity 0.414 m·s-1. Conversely a lower mass mixing rate 0.114 kg·s-1(the diameter of the small crucible bottom hole is 8 mm) would result in a higher fluid stream velocity 0.879 m·s-1. A lower mass mixing rate would be better to refine the primary Si than a higher mass mixing rate. Meanwhile, the morphology and distribution of primary Si could also be improved. Especially, when Al-30%Si alloy at 820 °C was mixed with pure Al at 670 °C in the case of a mass mixing rate of 0.114 kg·s-1 and a pouring temperature of 680 °C, the average size of the primary Si phase would be only 18.2 μm. Its morphology would mostly be octahedral and the primary Si would distribute uniformly in the matrix microstructure. The lower mass mixing rate(0.114 kg·s-1) will enhance the broken tendency of Al-30%Si steam and the mixing agitation of resultant melt, so the primary Si phase can be better refined.
基金Projects(51301082,51464031) supported by the National Natural Science Foundation of ChinaProject(2015011038) supported by the Natural Science Foundation of Shanxi Province,China
文摘Effects of solid solution treatment and cooling on the morphology of long period stacking order(LPSO)phase and precipitation hardening behavior of Mg?2Dy?0.5Ni(molar fraction,%)alloy were investigated.Microstructures of the as-cast alloy mainly consisted ofα-Mg phase,bamboo-like Mg12DyNi phase with LPSO structure distributed between dendrites and small amounts of cubic Dy phases.During solid solution treatment at565oC for12h and subsequent different cooling conditions,dot-shaped,block,fine lamellar and rod-shaped LPSO phases precipitate in Mg matrix,respectively.For continuous cooling conditions(furnace and air cooling),the fine lamellar LPSO phase generally forms in grain interior and its volume fraction increases and block LPSO phase coarsens with increasing cooling time.For discontinuous cooling conditions(air cooling after furnace cooling to415and265°C),the dot-shaped LPSO grows into the rod-shaped phase,which results in an decrease of cooling hardening behavior of alloy.
基金financially supported by the National Natural Science Foundations of China(Grant Nos.51064017 and 51464031)
文摘In the present work, 7075 aluminum alloy(Al-Zn-Mg-Cu) was produced by both conventional casting(CC) and controlled diffusion solidification(CDS) methods. Each sample was subjected to different heat-treatment conditions: as-cast, T4, and T6;and their microstructural and mechanical properties were investigated by optical microscopy(OM), scanning electron microscopy(SEM) and X-ray diffractometry(XRD). It was found that CDS promoted the formation of non-dendritic primary α-Al phase and reduced shrinkage porosity, thus resulting in improved mechanical properties. In addition, the eutectic phase of the CDS samples mainly consisted of T(Al-ZnMg-Cu) phase, which manifested a well-developed lamellar eutectic structure. However, in the CC samples, the T(Al-Zn-Mg-Cu) phase was composed of rod-like eutectics. Moreover, the θ(Al2 Cu) eutectic contents in the CC samples were greater than those in the CDS samples. Each element in the CC samples had an obvious change in the grain boundary, whereas the change in element content in the CDS samples was gradual. Therefore, the non-dendritic morphology of the primary phase and the presence of rod-like eutectics in the matrix of the CDS samples led to enhanced tensile strength and elongation under different heat treatment conditions.
基金financially supported by the National Natural Science Foundation of China(No.51464031)
文摘Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semisolid slurry of A356 aluminum alloy can be prepared by self-inoculation method at 600℃. Primary a-AI particles with fine and spherical morphologies are uniformly distributed when the isothermal holding time of slurry is 3 min. Liquid phase segregation occurs during rheo-diecasting process of semisolid slurry and the primary particles (α1) show obvious plastic deformation in the area of high stress and low cooling rate. A small amount of dendrites resulting from the relatively low temperature of the shot chamber at the initial stage of secondary solidification are fragmented as they pass through the in-gate during the mould filling process. The amount of dendrite fragments decreases with the increase of filling distance. During the solidification process of the remaining liquid, the nucleation rate of secondary particles (α2) increases with the increase of cooling rate, and the content of Si in secondary particles (α2) are larger than primary particles (α1). With the increase of cooling rate, the content of Si in secondary particles (α2) gradually increases. The morphologies of eutectic Si in different parts of die casting are noticeably different. The low cooling rate in the first filling positions leads to coarse eutectic structures, while the high cooling rate in the post filling positions promotes small and compact eutectic structures.
基金financially supported by the National Nature Science Foundations of China(51464032)the National Basic Research Program of China(grant No.2010CB635106)
文摘The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of Mg-Zn alloy. The Mg-6Zn magnesium alloys microalloyed with varying Cu content(0, 0.8, 1.5, 2.0 and 2.5wt.%) were fabricated by permanent mould casting, and the effects of Cu content on the microstructure and mechanical properties of as-cast Mg-6Zn alloys were studied using OM, SEM, XRD and tensile tests at room temperature. The obtained results show that the addition of Cu not only can refine the grains effectively, but also can modify the eutectic morphology and improve the mechanical properties of the alloys. The main phases of the studied alloys include α-Mg, MgZn_2, Mg_2Cu and CuMgZn. When the content of Cu exceeds 0.8wt.%, Mg_2Cu phase appears. Meanwhile, the eutectic morphology is modified into dendritic shape or lamellar structure, which has an adverse effect on the tensile properties. Furthermore, among the investigated alloys, the alloy containing 0.8% Cu shows an optimalultimate tensile strength of 196 MPa, while the alloy with 1.5wt.% Cu obtains an excellent elongation of 7.22%. The experimental alloys under different Cu contents show distinguishing fracture behaviors: the fracture of the alloy with 0.8wt.% Cu reveals a mixed mode of inter-granular and quasi-cleavage, while in other investigated alloys, the fracture behaviors are dominated by cleavage fracture.
基金supported by the National Natural Science Foundation of China(51301082 and 51464031)College students’ innovative entrepreneurial training plane of Lanzhou University of Technology(DC2015005)
文摘This paper presents some research information on the effects of Zn, Cu and Ni on the microstructure and mechanical properties of as-cast Mg-2Dy(at.%) alloys. The Mg-2Dy alloy is composed of α-Mg and Mg24Dy5 phases. With the addition of 0.5at.%Zn, 0.5at.%Cu and 0.5at.%Ni, respectively, besides α-Mg, the long period stacking order(LPSO) phases containing Zn, Cu, and Ni precipitated in the α-Mg interdentritic boundary. The addition of Ni effectively refined the dendrite arm spacing. The as-cast Mg-2Dy-0.5Ni alloy exhibited the best tensile strengths and elongation. The better mechanical properties were mainly attributed to small secondry dendrite arm spacing(SDAS) and high volume fraction of LPSO phases.
基金This work was supported by the Sichuan Science and Technology Program(No.2020JDRC0108)the National Science Foundation of China(Nos.41774147 and 41774190).
文摘In this study,the theory of minimum detectable activity concentration(MDAC)for airborne gamma-ray spectrometry(AGS)was derived,and the relationship between the MDAC and the intrinsic effi-ciency of a scintillation counter,volume,and energy res-olution of scintillation crystals,and flight altitude of an aircraft was investigated.To verify this theory,experi-mental devices based on NaI and CeBr 3 scintillation counters were prepared,and the potassium,uranium,and thorium contents in calibration pads obtained via the stripping ratio method and theory were compared.The MDACs of AGS under different conditions were calculated and analyzed using the proposed theory and the Monte Carlo method.The relative errors found via a comparison of the experimental and theoretical results were less than 4%.The theory of MDAC can guide the work of AGS in probing areas with low radioactivity.
文摘Objective:To study the potential mechanism of Huangqi Guizhi Wuwu Decoction in the treatment of cervical spondylosis based on the network pharmacological method,and to provide a basis for clinical application and pharmacological research.Methods:TCMSP search was used to screen the main active compounds and related action targets of Huangqi Guizhi Wuwu Decoction,the standard names of action targets were obtained through the Uniprot database,and the"drug-target"interaction network was constructed by using Cytoscape3.6.1 software.The related targets of cervical spondylosis were obtained by searching GeneCards,OMIM,DisGeNET,and CTD databases,and the disease targets and drug targets were mapped by the Venny platform,and the intersection genes of them were the potential targets for drug treatment of this disease.Then,the intersection genes were input into the STRING database and Cytoscape 3.6.1 software,and the protein-protein interactions(PPI)network of"drug-disease intersection targets"was constructed,and we screened the core targets.Finally,GO biological function analysis and KEGG signaling pathway analysis of core targets were carried out through the DAVID database.Results:According to the screening conditions,74 effective compounds and 138 drug action targets of Huangqi Guizhi Wuwu Decoction were obtained,12179 genes related to cervical spondylosis were obtained,and the Venny platform analysis obtained 105 intersecting targets.With visual network processing by Cytoscape software,33 core targets were obtained by analyzing and calculating the core target degree values,which were JUN,PTGS2,NR3C1,TNF,IL6,TP53,EGFR,VEGFA,NOS3,IL1B,and so on.GO analysis showed that there were 133 items(P<0.05),involving adrenergic receptor activation,neurotransmitter receptor activation,nuclear receptor activation,catecholamine binding,etc.KEGG analysis obtained a total of 139 pathways(P<0.05),involving IL-17 signaling pathway,and tumor necrosis factor signaling pathway,relaxin signaling pathway,AGE-RAGE signaling pathway of diabetic complications,fluid shear stress,and atherosclerosis.Conclusion:the active components in Huangqi Guizhi Wuwu decoction may act on the core targets such as JUN,PTGS2,NR3C1,TNF,IL6,TP53,VEGFA through IL-17 signal pathway,tumor necrosis factor signal pathway,and AGE-RAGE signal pathway of diabetic complications,and exert their therapeutic effects.The research results can provide a basis for future basic and clinical research.
基金the National Key Research and Development Program under Grant No.2018YFB2001800the National Natural Science Foundation of China under Grant Nos.51674077 and 51871184+1 种基金Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals under Grant No.18LHPYO13High-Level Talent Support Program of Liaoning under Grant No.XLYC1802128。
文摘A hypereutectic Al-3Fe(wt.%)alloy was subjected by rheo-extrusion,and the effect of sub-rapid cooling and shear deformation on the refinement of Fe-rich phase was investigated.The results showed that both the primary Fe-rich phase and eutectic Fe-rich phase in the solidified Al-Fe alloy were finer than the platelike Fe-rich phase in the as-cast Al-Fe alloy with the same content of Fe.The solidified Al-Fe alloy was subjected to three stages of shear deformation,and both the primary Fe-rich phase and eutectic Fe-rich phase were fractured and the average length was refined to 400 nm,while Fe-rich phase in the as-cast Al-3Fe(wt.%)alloy was platelike and its average length was 40 pm.The tensile strength and elongation of the hypereutectic Al-3Fe(wt.%)alloy containing nanosized Fe-rich phase were 162 MPa and 25.78%while those of the as-cast AI-3Fe(wt.%)alloy containing coarse platelike Fe-rich phase were 102 MPa and 16.84%,respectively.In the refineme nt of Fe-rich phase in hypereutectic Al-Fe alloy during rheo-extrusion,the three stages of shear deformation contributed more than sub-rapid cooling.
基金financially supported by the National Natural Science Foundation of China(Nos.51301082 and51464031)
文摘Microstructural evolution and age-hardening behavior of Mg-2 Dy-6 Zn(at%)alloy during solid-solution and aging treatment were investigated.The microstructure of as-cast alloy is composed of a-Mg,Mg3 DyZn6(Ⅰ)phase,Mg3 Dy2 Zn3(W)phase,Mg(Zn,Dy)phase and a small amount of Mg0.97Zn0.03 phases.After solid-solution treatment(480℃,12 h),all the I phases and most W phases dissolve into a-Mg matrix and the remainder W phases transform into Mg(Dy,Zn)phase and MgDy3 phase.During aging treatment,I phase and small amounts of W phases co-precipitate from α-Mg matrix,respectively.The alloy exhibits a peak hardness of HV 77.5 at 200 ℃ for 8 h.The excellent age-hardening behavior of alloy is mainly attributed to the co-precipitation strengthening of I and W phases.