In this paper, we designed a thermo-optic variable optical attenuator (VOA) based on quartz substrate, which consists of a Mach-Zehnder interferometer (MZI) and a thin film heater above the phase-modulation arm. The t...In this paper, we designed a thermo-optic variable optical attenuator (VOA) based on quartz substrate, which consists of a Mach-Zehnder interferometer (MZI) and a thin film heater above the phase-modulation arm. The transmission properties of the waveguide and attenuation characteristics of the device have been simulated by beam propagation method (BPM), and the simulated results illustrated that the designed VOA had good performance.展开更多
We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain...We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.展开更多
Both the 4 × 20 GHz coarse wavelength division multiplexing and LAN-WDM receiver optical sub-assemblies(ROSAs) were developed. The ROSA package was hybrid integrated with a planar lightwave circuit arrayed wave...Both the 4 × 20 GHz coarse wavelength division multiplexing and LAN-WDM receiver optical sub-assemblies(ROSAs) were developed. The ROSA package was hybrid integrated with a planar lightwave circuit arrayed waveguide grating(AWG) with 2% refractive index difference and a four-channel top-illuminated positive-intrinsicnegative photodetector(PD) array. The output waveguides of the AWG were designed in a multimode structure to provide flat-top optical spectra, and their end facet was angle-polished to form a total internal reflection interface to realize vertical coupling with a PD array. The maximum responsivity of ROSA was about 0.4 A/W, and its 3 dB bandwidth of frequency response was up to 20 GHz for each transmission lane. The hybrid integrated ROSA would be a cost-effective and easy-assembling solution for 100 Gb E data center interconnections.展开更多
Quantum key distribution(QKD) provides a solution for communication of unconditional security. However,the quantum channel disturbance in the field severely increases the quantum bit-error rate, degrading the performa...Quantum key distribution(QKD) provides a solution for communication of unconditional security. However,the quantum channel disturbance in the field severely increases the quantum bit-error rate, degrading the performance of a QKD system. Here we present a setup comprising silica planar light wave circuits(PLCs), which is robust against the channel polarization disturbance. Our PLCs are based on the asymmetric Mach–Zehnder interferometer(AMZI), integrated with a tunable power splitter and thermo-optic phase modulators. The polarization characteristics of the AMZI PLC are investigated by a novel pulse self-interfering method to determine the operation temperature of implementing polarization insensitivity. Over a 20 km fiber channel with 30 Hz polarization scrambling, our time-bin phase-encoding QKD setup is characterized with an interference fringe visibility of 98.72%. The extinction ratio for the phase states is kept between 18 and 21 d B for 6 h without active phase correction.展开更多
文摘In this paper, we designed a thermo-optic variable optical attenuator (VOA) based on quartz substrate, which consists of a Mach-Zehnder interferometer (MZI) and a thin film heater above the phase-modulation arm. The transmission properties of the waveguide and attenuation characteristics of the device have been simulated by beam propagation method (BPM), and the simulated results illustrated that the designed VOA had good performance.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504)the National Natural Science Foundation of China(Grant Nos.61875069 and 61575076)+1 种基金Hong Kong Scholars Program,China(Grant No.XJ2016026)the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20190302010GX and 20160520091JH)
文摘We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.
基金supported by the National High Technology Research and Development Program of China(No.2015AA016902)the National Natural Science Foundation of China(Nos.61435013 and 61405188)K.C.Wong Education Foundation
文摘Both the 4 × 20 GHz coarse wavelength division multiplexing and LAN-WDM receiver optical sub-assemblies(ROSAs) were developed. The ROSA package was hybrid integrated with a planar lightwave circuit arrayed waveguide grating(AWG) with 2% refractive index difference and a four-channel top-illuminated positive-intrinsicnegative photodetector(PD) array. The output waveguides of the AWG were designed in a multimode structure to provide flat-top optical spectra, and their end facet was angle-polished to form a total internal reflection interface to realize vertical coupling with a PD array. The maximum responsivity of ROSA was about 0.4 A/W, and its 3 dB bandwidth of frequency response was up to 20 GHz for each transmission lane. The hybrid integrated ROSA would be a cost-effective and easy-assembling solution for 100 Gb E data center interconnections.
基金National Key Research and Development Program of China(2018YFA0306403)National Natural Science Foundation of China(61435013,61627820)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(XDB43000000)K.C.Wong Education Foundation。
文摘Quantum key distribution(QKD) provides a solution for communication of unconditional security. However,the quantum channel disturbance in the field severely increases the quantum bit-error rate, degrading the performance of a QKD system. Here we present a setup comprising silica planar light wave circuits(PLCs), which is robust against the channel polarization disturbance. Our PLCs are based on the asymmetric Mach–Zehnder interferometer(AMZI), integrated with a tunable power splitter and thermo-optic phase modulators. The polarization characteristics of the AMZI PLC are investigated by a novel pulse self-interfering method to determine the operation temperature of implementing polarization insensitivity. Over a 20 km fiber channel with 30 Hz polarization scrambling, our time-bin phase-encoding QKD setup is characterized with an interference fringe visibility of 98.72%. The extinction ratio for the phase states is kept between 18 and 21 d B for 6 h without active phase correction.