In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
In the 6G era,Space-Air-Ground Integrated Network(SAGIN)are anticipated to deliver global coverage,necessitating support for a diverse array of emerging applications in high-mobility,hostile environments.Under such co...In the 6G era,Space-Air-Ground Integrated Network(SAGIN)are anticipated to deliver global coverage,necessitating support for a diverse array of emerging applications in high-mobility,hostile environments.Under such conditions,conventional orthogonal frequency division multiplexing(OFDM)modulation,widely employed in cellular and Wi-Fi communication systems,experiences performance degradation due to significant Doppler shifts.To overcome this obstacle,a novel twodimensional(2D)modulation approach,namely orthogonal time frequency space(OTFS),has emerged as a key enabler for future high-mobility use cases.Distinctively,OTFS modulates information within the delay-Doppler(DD)domain,as opposed to the timefrequency(TF)domain utilized by OFDM.This offers advantages such as Doppler and delay resilience,reduced signaling latency,a lower peak-to-average ratio(PAPR),and a reduced-complexity implementation.Recent studies further indicate that the direct interplay between information and the physical world in the DD domain positions OTFS as a promising waveform for achieving integrated sensing and communications(ISAC).In this article,we present an in-depth review of OTFS technology in the context of the 6G era,encompassing fundamentals,recent advancements,and future directions.Our objective is to provide a helpful resource for researchers engaged in the field of OTFS.展开更多
Joint radar and communication(JRC)technology is gradually becoming an essential approach to alleviating spectral congestion.Radar and communications systems were designed with common spectral and hardware resources to...Joint radar and communication(JRC)technology is gradually becoming an essential approach to alleviating spectral congestion.Radar and communications systems were designed with common spectral and hardware resources to reduce size,improve performance,reduce cost,and decongest the spectrum.Various approaches have been proposed to achieve the coexistence of radar and communication systems.This paper mainly focuses on the research directions of radar communication coexistence(RCC)and dual-function radar communication systems(DFRC)in JRC technology.We summarize and analyze the existing research problems in the JRC era.According to the characteristics and advantages of JRC technology,we highlight several potentials in military and commercial applications.展开更多
“It is not as easy as it looks,”Holden Thorp,Science’s chief editor,commented at the end of 2021,when explaining new research findings of the COVID-19 pandemic to the public had encountered great difficulties.1 As ...“It is not as easy as it looks,”Holden Thorp,Science’s chief editor,commented at the end of 2021,when explaining new research findings of the COVID-19 pandemic to the public had encountered great difficulties.1 As a matter of fact,science communication has never been easy because serious scientific knowledge is prone to be boring rather than interesting.There is only one atypical medium for science communication,i.e.,the science fiction movie(sci-fi movie for short),that has a huge amount of fans.展开更多
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
基金supported in part by National Natural Science Foundation of China under Grant 62101232in part by Guangdong Provincial Natural Science Foundation under Grant 2022A1515011257in part by Shenzhen Science and Technology Program under Grant JCYJ20220530114412029。
文摘In the 6G era,Space-Air-Ground Integrated Network(SAGIN)are anticipated to deliver global coverage,necessitating support for a diverse array of emerging applications in high-mobility,hostile environments.Under such conditions,conventional orthogonal frequency division multiplexing(OFDM)modulation,widely employed in cellular and Wi-Fi communication systems,experiences performance degradation due to significant Doppler shifts.To overcome this obstacle,a novel twodimensional(2D)modulation approach,namely orthogonal time frequency space(OTFS),has emerged as a key enabler for future high-mobility use cases.Distinctively,OTFS modulates information within the delay-Doppler(DD)domain,as opposed to the timefrequency(TF)domain utilized by OFDM.This offers advantages such as Doppler and delay resilience,reduced signaling latency,a lower peak-to-average ratio(PAPR),and a reduced-complexity implementation.Recent studies further indicate that the direct interplay between information and the physical world in the DD domain positions OTFS as a promising waveform for achieving integrated sensing and communications(ISAC).In this article,we present an in-depth review of OTFS technology in the context of the 6G era,encompassing fundamentals,recent advancements,and future directions.Our objective is to provide a helpful resource for researchers engaged in the field of OTFS.
文摘Joint radar and communication(JRC)technology is gradually becoming an essential approach to alleviating spectral congestion.Radar and communications systems were designed with common spectral and hardware resources to reduce size,improve performance,reduce cost,and decongest the spectrum.Various approaches have been proposed to achieve the coexistence of radar and communication systems.This paper mainly focuses on the research directions of radar communication coexistence(RCC)and dual-function radar communication systems(DFRC)in JRC technology.We summarize and analyze the existing research problems in the JRC era.According to the characteristics and advantages of JRC technology,we highlight several potentials in military and commercial applications.
基金This work is funded by the National Natural Science Foundation of China(no.62172393)Zhongyuanyingcai Program-funded to Central Plains Science and Technology Innovation Leading Talent Program(no.204200510002)+1 种基金the Major Public Welfare Project of Henan Province(no.201300311200)the Ministry of Education Industry Education Collaborative Education Project(Multi-agent Artificial Intelligence Course Construction)funded by Tencent(no.230700006203144)。
文摘“It is not as easy as it looks,”Holden Thorp,Science’s chief editor,commented at the end of 2021,when explaining new research findings of the COVID-19 pandemic to the public had encountered great difficulties.1 As a matter of fact,science communication has never been easy because serious scientific knowledge is prone to be boring rather than interesting.There is only one atypical medium for science communication,i.e.,the science fiction movie(sci-fi movie for short),that has a huge amount of fans.