期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Process analysis of temperature swing adsorption and temperature vacuum swing adsorption in VOCs recovery from activated carbon 被引量:3
1
作者 Yadong Li yuanhui shen +4 位作者 Zhaoyang Niu Junpeng Tian Donghui Zhang Zhongli Tang Wenbin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期346-360,共15页
In order to better guide the design of industrial process for purification and recovery of VOCs,temperature swing adsorption(TSA)and temperature vacuum swing adsorption(TVSA)process for VOCs purification and recovery ... In order to better guide the design of industrial process for purification and recovery of VOCs,temperature swing adsorption(TSA)and temperature vacuum swing adsorption(TVSA)process for VOCs purification and recovery were studied systematically with activated carbon adsorbent.The adsorption and desorption behaviors of benzene on activated carbon in above two processes were investigated systematically.Effects of operating parameters on process performances were further analyzed,including as regeneration temperature,purging feed ratio and hot–cold purging ratio.The results showed that the increase of hot–cold purging ratio(HP/CP)could obtain the same regeneration effect as the increase of desorption temperature.Increasing the feed purge ratio without increasing the hot–cold purging ratio is not conducive to bed regeneration,because a large number of cold purge gases cannot utilize the residual heat of temperature wave,thus reducing the desorption effect of the cooling step on the bed.In addition,the vacuum step can enhance the regeneration ability of hot nitrogen to the bed at the same regeneration temperature,making the bed regeneration of TVSA process more thorough.Temperature in the middle and lower part of the bed in TVSA process was higher and the regeneration was more thorough.In conclusion,TVSA has more obvious advantages than TSA in terms of energy consumption,hot or cold purge volume and bed regeneration. 展开更多
关键词 VOCS TSA TVSA Activated carbon BENZENE
下载PDF
Integrated vacuum pressure swing adsorption and Rectisol process for CO_(2) capture from underground coal gasification syngas 被引量:1
2
作者 Jian Wang yuanhui shen +2 位作者 Donghui Zhang Zhongli Tang Wenbin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期265-279,共15页
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi... An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed. 展开更多
关键词 Underground coal gasification Vacuum pressure swing adsorption Rectisol process CO_(2)capture Integrated process
下载PDF
Effect of pore size on CH4/N2 separation using activated carbon 被引量:5
3
作者 Gaofei Chen Yaxiong An +4 位作者 yuanhui shen Yayan Wang Zhongli Tang Bo Lu Donghui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1062-1068,共7页
In this paper,a model of activated carbon was established by molecular simulation and the separation performance of N2 and CH4 on activated carbon was studied.In order to evaluate the adsorption selectivity and diffus... In this paper,a model of activated carbon was established by molecular simulation and the separation performance of N2 and CH4 on activated carbon was studied.In order to evaluate the adsorption selectivity and diffusion selectivity of N2 and CH4,Grand Canonical Monte Carlo and molecular dynamic methods were used to obtain equilibrium adsorption isotherms and mean square displacements of N2 and CH4 on activated carbon with different pore sizes.Research results showed that the difference in adsorption isosteric heat of N2 and CH4 at the pore size of 0.46 nm is the largest,which is 5.759 and 7.03 kcal·mol^-1(1 cal=4.184 J),respectively.Activated carbon with pore size of 0.46 nm has the best N2 and CH4 adsorption selectivity,while its diffusion selectivity is not obvious. 展开更多
关键词 Activated carbon Coalbed methane GCMC MD Molecular simulation
下载PDF
Vacuum pressure swing adsorption process for coalbed methane enrichment 被引量:6
4
作者 Bo Lu yuanhui shen +2 位作者 Zhongli Tang Donghui Zhang Gaofei Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期264-280,共17页
The enrichment of low concentration coalbed methane using adsorption process with activated carbon adsorbent was studied in this work.Adsorption isotherms of methane,nitrogen and carbon dioxide on activated carbon wer... The enrichment of low concentration coalbed methane using adsorption process with activated carbon adsorbent was studied in this work.Adsorption isotherms of methane,nitrogen and carbon dioxide on activated carbon were measured by volumetric method,meanwhile a series of breakthrough tests with single component,binary components and three components feed mixture has been performed for exploring dynamic adsorption behaviors.Moreover,a rigorous mathematical model of adsorption bed containing mass,energy,and momentum conservation equation as well as dualsite Langmuir model with the Linear driving force model for gassolid phase mass transfer has been proposed for numerical modeling and simulation of fixed bed breakthrough process and vacuum pressure swing adsorption process.Furthermore,the lumped mass transfer coefficient of methane,nitrogen and carbon dioxide on activated carbon adsorbent has been determined to be 0.3 s^(-1),1.0 s^(-1) and 0.06 s^(-1) by fitting the breakthrough curves using numerical calculation.Additionally,a six bed VPSA process with twelve step cycle sequence has been proposed and investigated for low concentration coalbed methane enrichment.Results demonstrated that the methane molar fraction in feed mixture ranged from 10%to 50%could be enriched to 32.15%to 88.75%methane in heavy product gas with a methane recovery higher than 83%under the adsorption pressure of 3 bar(1 bar=105 Pa)and desorption pressure of 0.1 bar.Energy consumption of this VPSA process was varied from 0.165 k·W·h·m^(-3) CH_(4)to 0.649 k·W·h·m^(-3) CH_(4).Finally,a dualstage VPSA process has been successfully developed to upgrade a low concentration coalbed methane containing 20%methane to a target product gas with methane purity higher than 90%,meanwhile the total methane recovery was up to 98.71%with a total energy consumption of 0.504 k·W·h·m^(-3)CH_(4). 展开更多
关键词 oalbed methane enrichment VPSA process Activated carbon Numerical modeling
下载PDF
Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas 被引量:2
5
作者 Xiuxin Yu Bing Liu +1 位作者 yuanhui shen Donghui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期378-391,共14页
A two-stage vacuum pressure swing adsorption(VPSA)process that coupled kinetically controlled and equilibrium controlled separation process with reflux has been investigated for capturing carbon dioxide from dry flue ... A two-stage vacuum pressure swing adsorption(VPSA)process that coupled kinetically controlled and equilibrium controlled separation process with reflux has been investigated for capturing carbon dioxide from dry flue gas(85%N_(2)/15%CO_(2)).In the first enriching stage,carbon molecular sieve(CMS),which shows kinetic selectivity for CO_(2)/N_(2),is adopted as the adsorbent to remove most N_(2)in feed gas,thereby upgrading CO_(2)and significantly reducing the amount for further refinement.The second stage loads zeolite 13X as adsorbent to purify the CO_(2)-rich flow from the first stage for meeting the requirements of National Energy Technology Laboratory.Series of experiments have been conducted for adsorption isotherms measuring and lab-scale experimental validation as well as analysis.The effect of feed composition on the separation performance of the PSA system was studied experimentally and theoretically here.The optimal results achieved 95.1%purity and 92.9%recovery with a high CO_(2)productivity(1.89 mol CO_(2)·h^(-1)·kg^(-1))and an appropriate energy consumption of 1.07 MJ·(kg CO_(2))^(-1).Further analysis has been carried out by simulation for explicating the temperature,pressure,and concentration distribution at cyclic steady state. 展开更多
关键词 Two-stage VPSA process Binary mixture CO_(2)capture Zeolite 13X Carbon molecular sieve
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部