This study presents a new restoration method for fragmented ceramic cultural relics using bioslurry-induced biocementation via a microbially induced calcium carbonate precipitation (MICP) process. Bioslurry is highly ...This study presents a new restoration method for fragmented ceramic cultural relics using bioslurry-induced biocementation via a microbially induced calcium carbonate precipitation (MICP) process. Bioslurry is highly urease active calcium carbonate crystals, which serve as filling and cementitious material with newly induced calcite precipitation when supplying cementation solution (urea and calcium source). With the pre-filling of bioslurry and newly induced calcite crystals, the fragmented ceramic can be connected and the gap along the fracture surface can be sealed. Due to the high urease active bacteria cells embedded in bioslurry, the ceramic restoration can be completed in 24 h with the optimal concentration of cementation solution of 1.6 M. Taking the advantage of bonding effect gained from newly induced calcite precipitation, the tensile strength was improved up to 0.92 MPa through a customized tensile strength test. This is satisfactory to ensure the stability and integrity of fragmented ceramic after bioslurry-induced restoration. A demonstrative restoration has been completed on fragmented ceramics from Ming Dynasty. With the good bonding strength and high stability of bioslurry-induced calcite precipitation, the proposed bioslurry-induced restoration method contributes valuable insights to the conservation of ceramic cultural relics. Other prospective applications include the restoration of masonry relics and bone relics.展开更多
The several gigabit rate and license-free spectrum resources of 7 GHz bandwidth can be provided by the 60 GHz short-range communication technology, therefore it becomes one of the most promising alternative technologi...The several gigabit rate and license-free spectrum resources of 7 GHz bandwidth can be provided by the 60 GHz short-range communication technology, therefore it becomes one of the most promising alternative technologies in the wireless communication. In this paper, the millimeter wave propagation characteristics in the complex office environment are studied by the SBR/Image method. Firstly, under the complex office environment, the propagation characteristics including received power, the arrival angle and the probability distribution of the arrival angle are studied without regard roughness and oxygen absorption loss. Then, the RMS delay spreads in 60 GHz, 2.4 GHz and 5 GHz wireless LAN signals are simulated and compared.展开更多
The propagation characteristics of radio wave have been an important topic in wireless communications. Based on the ray tracing method, the propagation of radio wave for indoor NLOS environment is simulated and analyz...The propagation characteristics of radio wave have been an important topic in wireless communications. Based on the ray tracing method, the propagation of radio wave for indoor NLOS environment is simulated and analyzed. In this paper, the received power is obtained by simulation, and we will analyze the impact of various factors on the received power. Later, the study can be used to simplify indoor radio wave propagation model and provide a theoretical basis, which is in favor of indoor wireless communication network planning and optimization and can lay the foundation of the development of future technology.展开更多
In this paper, the outdoor microcellular radio propagation characteristics at 3.5 GHz are simulated and analyzed by the method of SBR/Image (Shooting and bouncing ray tracing/Image). A good agreement is achieved betwe...In this paper, the outdoor microcellular radio propagation characteristics at 3.5 GHz are simulated and analyzed by the method of SBR/Image (Shooting and bouncing ray tracing/Image). A good agreement is achieved between the results simulated and the results given in published literature. So the correctness of the method has been validated. Some simulated propagation parameters of LOS (Line-of-sight) and NLOS (None-line-of-sight) have been compared. The analysis of the above results provides the foundation for the coverage of outdoor microcellular systems.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52108300)Entrepreneurship and Innovation Support for Overseas Student,Chongqing,China(Grant No.CX2022007)Research Institutions Performance Incentive and Guidance Project(Grant No.2023JXJL-YFX0078).
文摘This study presents a new restoration method for fragmented ceramic cultural relics using bioslurry-induced biocementation via a microbially induced calcium carbonate precipitation (MICP) process. Bioslurry is highly urease active calcium carbonate crystals, which serve as filling and cementitious material with newly induced calcite precipitation when supplying cementation solution (urea and calcium source). With the pre-filling of bioslurry and newly induced calcite crystals, the fragmented ceramic can be connected and the gap along the fracture surface can be sealed. Due to the high urease active bacteria cells embedded in bioslurry, the ceramic restoration can be completed in 24 h with the optimal concentration of cementation solution of 1.6 M. Taking the advantage of bonding effect gained from newly induced calcite precipitation, the tensile strength was improved up to 0.92 MPa through a customized tensile strength test. This is satisfactory to ensure the stability and integrity of fragmented ceramic after bioslurry-induced restoration. A demonstrative restoration has been completed on fragmented ceramics from Ming Dynasty. With the good bonding strength and high stability of bioslurry-induced calcite precipitation, the proposed bioslurry-induced restoration method contributes valuable insights to the conservation of ceramic cultural relics. Other prospective applications include the restoration of masonry relics and bone relics.
文摘The several gigabit rate and license-free spectrum resources of 7 GHz bandwidth can be provided by the 60 GHz short-range communication technology, therefore it becomes one of the most promising alternative technologies in the wireless communication. In this paper, the millimeter wave propagation characteristics in the complex office environment are studied by the SBR/Image method. Firstly, under the complex office environment, the propagation characteristics including received power, the arrival angle and the probability distribution of the arrival angle are studied without regard roughness and oxygen absorption loss. Then, the RMS delay spreads in 60 GHz, 2.4 GHz and 5 GHz wireless LAN signals are simulated and compared.
文摘The propagation characteristics of radio wave have been an important topic in wireless communications. Based on the ray tracing method, the propagation of radio wave for indoor NLOS environment is simulated and analyzed. In this paper, the received power is obtained by simulation, and we will analyze the impact of various factors on the received power. Later, the study can be used to simplify indoor radio wave propagation model and provide a theoretical basis, which is in favor of indoor wireless communication network planning and optimization and can lay the foundation of the development of future technology.
文摘In this paper, the outdoor microcellular radio propagation characteristics at 3.5 GHz are simulated and analyzed by the method of SBR/Image (Shooting and bouncing ray tracing/Image). A good agreement is achieved between the results simulated and the results given in published literature. So the correctness of the method has been validated. Some simulated propagation parameters of LOS (Line-of-sight) and NLOS (None-line-of-sight) have been compared. The analysis of the above results provides the foundation for the coverage of outdoor microcellular systems.