In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k ...In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.展开更多
The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The ex...The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.展开更多
The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in...The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in a targeted way,a positive temperature coefficient(PTC)material(Ba Ti O3-based compound(BT60))was selected as the filler in this paper,whose electrical resistivity has a PTC effect when the temperature exceeds its Curie temperature.The BT60 was treated with hydrogen peroxide and(3-Aminopropyl)triethoxysilane.Epoxy composites with different loadings of BT60 fillers(0 wt%,0.5 wt%,and 2 wt%of epoxy)were prepared,denoted as EP-0,EP-0.5,and EP-2.It was shown that BT60 was able to maintain the DC breakdown strength when its loading was less than 2 wt%of epoxy.As the temperature exceeds 60°C,BT60 will compensate for the negative temperature coefficient effect of epoxy resin to some extent.The electrical resistivity of EP-2 was improved by 55%compared with that of neat epoxy at 90°C.It was found that the potential barrier at the grain boundary of BT60 and the deep traps in the interface between BT60 and the epoxy resin hinder the migration of carriers and thus increase the electrical resistivity of epoxy composite.展开更多
Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard(OIP) of the converter transformer are different from those of the ...Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard(OIP) of the converter transformer are different from those of the traditional AC transformer. The study on effect of temperature on the creeping discharge characteristics of OIP under combined AC–DC voltage is seriously inadequate. Therefore, this paper investigates the characteristics of OIP creepage discharge under combined AC–DC voltage and discusses the influence of temperature on creepage discharge characteristics under different temperatures from 70 °C to 110 °C. The experimental results show that the partial discharge inception voltage and flashover voltage decrease with increasing temperature. The times of low amplitude discharge(LAD) decrease and amplitude of LAD increases. Simultaneously, the times of high amplitude discharge(HAD) gradually increase at each stage of creepage discharge with higher temperature. The analysis indicates that the charge carriers easily accumulate and quickly migrate directional movement along the electric field ahead of discharging. The residual charge carriers are more easily dissipated after discharging.The ‘hump’ region of LAD moves to the direction of higher discharge magnitude. The interval time between two continuous discharges is shortened obviously. The concentration of HAD accelerates the development of OIP insulation creepage discharge. The temperature had an accelerating effect on the development of discharge in the OIP under applying voltage.展开更多
To improve the accuracy and efficiency of the aging life prediction and assessment of transformer oil-paper insulation,and to make up for the deficiencies of traditional characterizers,such as 2-furfural,carbon monoxi...To improve the accuracy and efficiency of the aging life prediction and assessment of transformer oil-paper insulation,and to make up for the deficiencies of traditional characterizers,such as 2-furfural,carbon monoxide,and carbon dioxide,a method for the simultaneous determination of methanol,ethanol,n−propanol,and η-butanol in oil with a single injection is established by headspace-gas chromatography-mass spectrometry.The measured results show that the determination limits of the four alcohol characterizers can be controlled to 10μg/kg level.Based on this method,the change patterns of the above four alcohols with thermal aging time and degree of polymerization are obtained through thermal aging experimental research.Ethanol,η-propanol,and η-butanol in oil indicate nearly linear correlations with thermal aging time and degree of polymerization,similar to that of methanol.By analyzing 52 sets of measured data of 500 kV EHV transformers in operation,η-butanol is found to have excellent performance,and a new method to evaluate the aging state of oil-paper insulation employing η-butanol and methanol is proposed along with the aging attention value model.The measured data of 500 kV EHV transformers in operation indicate that the combination of η-butanol and methanol as the preferred characterizers can effectively compensate for the shortcoming of traditional characterizers in the early stages of aging,and the feasibility of the method is verified.Two possible pathways for the generation of η-butanol by cellulose cleavage during the aging of oil-paper are proposed from the chemical structure of cellulose.展开更多
Electrical tree degradation is one of the main causes of insulation failure in high-frequency transformers.Electrical tree degradation is studied on pure epoxy resin(EP)and MgO/EP composites at frequencies ranging fro...Electrical tree degradation is one of the main causes of insulation failure in high-frequency transformers.Electrical tree degradation is studied on pure epoxy resin(EP)and MgO/EP composites at frequencies ranging from 50 Hz to 130 kHz.The results show that the tree initiation voltage of EP decreases,while the growth rate and the expansion coefficient increase with frequency.Moreover,the bubble phenomenon at high frequencies in EP composites is discussed.Combined with trap distribution character-istics within the material,the intrinsic mechanism of epoxy composites to inhibit the growth of the electrical tree at different frequencies is discussed.It can be concluded that more deep traps and blocking effect are introduced by doping nano-MgO into EP bulks,which can improve the electrical tree resistance performance of EP composites in a wide frequency range.展开更多
High electric field and temperatures can result in electrical property degradation of oil-paper insulation and accelerate its aging process.This paper describes the regulation of space charge in the process of electro...High electric field and temperatures can result in electrical property degradation of oil-paper insulation and accelerate its aging process.This paper describes the regulation of space charge in the process of electro-thermal aging.Electric field distortion and differences in characteristic parameters during electro-thermal aging are analyzed,along with the effects of electro-thermal aging on space charge from the perspective of trap energy.High temperature and an electric field are used to accelerate the aging of oil-paper,and space charge characteristics are measured using the pulsed electro-acoustic(PEA)method throughout the electro-thermal aging.Based on results obtained,it can be concluded that homo-charge injection occurs at the anode and the type of the charge injection at the cathode varies throughout the electro-thermal aging;the decrease of permittivity during aging allows for space charge injection to take place;growth of trap depth makes the space charge accumulate in the middle of the sample;and space charge accumulation after electro-thermal aging results in inner electric field distortion,which leads to large current and decreased breakdown in voltages.展开更多
Incorporating positive temperature coefficient(PTC)ceramic particles into polymers provides a prospective alternative solution for suppressing severe electric field distortions caused by negative temperature coefficie...Incorporating positive temperature coefficient(PTC)ceramic particles into polymers provides a prospective alternative solution for suppressing severe electric field distortions caused by negative temperature coefficient(NTC)of electrical resistivity within polymer insulation in high voltage direct current cable.The effect of the Curie temperature of PTC particles on the inhibition of the NTC effect of cross-linked polyethylene(XLPE)is investigated in this study.Positive temperature coefficient particles with varied Curie temperatures are surface-modified and melt blending with XLPE.The modified particles are dispersed on averagely in the matrix.The electrical resistivity,space charge behaviour,and direct current(DC)electrical breakdown strength of the samples are investigated at different temperatures,exploring the effect of the Curie temperature of PTC particles on suppressing the NTC effect of XLPE.It is demonstrated that the reduction in Curie temperature can further suppress the NTC effect of XLPE,enhance the DC strength at elevated temperatures,and inhibit the internal space charge accumulation.The reduction in the Curie temperatures means that the initiation of the PTC effect advances,exhibiting a higher potential barrier and inhibiting the NTC effect more effectively.This work may give a reference for improving the temperature stability of DC properties for XLPE cable insulation.展开更多
基金supported in part by National Basic Research Program of China(973 Project)(No.2014CB239501)National Natural Science Foundation of China(Nos.51707100,51377089)+1 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE16208)China Postdoctoral Science Foundation(No.2016M591176)
文摘In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.
基金supported by the program for Major Project of the Natural Science Foundation of Qinghai Province(No.2016-ZJ-925Q)Chinese National Programs for Fundamental Research(No.2011CB209400)and(VSN 201602),(2017-K-23)
文摘The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.
基金support from National Natural Science Foundation of China(No.51977186)the China Postdoctoral Science Foundation(No.2019M650029)+3 种基金the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)the National Key R&D Program of China(No.2017YFB0902704)the State Key Development Program of Basic Research of China(973 Program)(No.2014CB239501)the Science and Technology Project of the State Grid Corp.of China(No.52110418001Y).
文摘The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in a targeted way,a positive temperature coefficient(PTC)material(Ba Ti O3-based compound(BT60))was selected as the filler in this paper,whose electrical resistivity has a PTC effect when the temperature exceeds its Curie temperature.The BT60 was treated with hydrogen peroxide and(3-Aminopropyl)triethoxysilane.Epoxy composites with different loadings of BT60 fillers(0 wt%,0.5 wt%,and 2 wt%of epoxy)were prepared,denoted as EP-0,EP-0.5,and EP-2.It was shown that BT60 was able to maintain the DC breakdown strength when its loading was less than 2 wt%of epoxy.As the temperature exceeds 60°C,BT60 will compensate for the negative temperature coefficient effect of epoxy resin to some extent.The electrical resistivity of EP-2 was improved by 55%compared with that of neat epoxy at 90°C.It was found that the potential barrier at the grain boundary of BT60 and the deep traps in the interface between BT60 and the epoxy resin hinder the migration of carriers and thus increase the electrical resistivity of epoxy composite.
基金supported by the Natural Science Foundation of Qinghai Province(No.2016-ZJ-925Q)Chinese National Programs for Fundamental Research(No.2011CB209400)
文摘Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard(OIP) of the converter transformer are different from those of the traditional AC transformer. The study on effect of temperature on the creeping discharge characteristics of OIP under combined AC–DC voltage is seriously inadequate. Therefore, this paper investigates the characteristics of OIP creepage discharge under combined AC–DC voltage and discusses the influence of temperature on creepage discharge characteristics under different temperatures from 70 °C to 110 °C. The experimental results show that the partial discharge inception voltage and flashover voltage decrease with increasing temperature. The times of low amplitude discharge(LAD) decrease and amplitude of LAD increases. Simultaneously, the times of high amplitude discharge(HAD) gradually increase at each stage of creepage discharge with higher temperature. The analysis indicates that the charge carriers easily accumulate and quickly migrate directional movement along the electric field ahead of discharging. The residual charge carriers are more easily dissipated after discharging.The ‘hump’ region of LAD moves to the direction of higher discharge magnitude. The interval time between two continuous discharges is shortened obviously. The concentration of HAD accelerates the development of OIP insulation creepage discharge. The temperature had an accelerating effect on the development of discharge in the OIP under applying voltage.
基金supported by Innovation Foundation of China Electric Power Research Institute(GY83-18-006).
文摘To improve the accuracy and efficiency of the aging life prediction and assessment of transformer oil-paper insulation,and to make up for the deficiencies of traditional characterizers,such as 2-furfural,carbon monoxide,and carbon dioxide,a method for the simultaneous determination of methanol,ethanol,n−propanol,and η-butanol in oil with a single injection is established by headspace-gas chromatography-mass spectrometry.The measured results show that the determination limits of the four alcohol characterizers can be controlled to 10μg/kg level.Based on this method,the change patterns of the above four alcohols with thermal aging time and degree of polymerization are obtained through thermal aging experimental research.Ethanol,η-propanol,and η-butanol in oil indicate nearly linear correlations with thermal aging time and degree of polymerization,similar to that of methanol.By analyzing 52 sets of measured data of 500 kV EHV transformers in operation,η-butanol is found to have excellent performance,and a new method to evaluate the aging state of oil-paper insulation employing η-butanol and methanol is proposed along with the aging attention value model.The measured data of 500 kV EHV transformers in operation indicate that the combination of η-butanol and methanol as the preferred characterizers can effectively compensate for the shortcoming of traditional characterizers in the early stages of aging,and the feasibility of the method is verified.Two possible pathways for the generation of η-butanol by cellulose cleavage during the aging of oil-paper are proposed from the chemical structure of cellulose.
基金National Natural Science Foundation of China,Grant/Award Number:92266110Natural Science Foundation of Fujian Province,Grant/Award Number:2022J01112the Project of State Key Laboratory of Power System and Generation Equipment,Grant/Award Number:SKLD22KZ10。
文摘Electrical tree degradation is one of the main causes of insulation failure in high-frequency transformers.Electrical tree degradation is studied on pure epoxy resin(EP)and MgO/EP composites at frequencies ranging from 50 Hz to 130 kHz.The results show that the tree initiation voltage of EP decreases,while the growth rate and the expansion coefficient increase with frequency.Moreover,the bubble phenomenon at high frequencies in EP composites is discussed.Combined with trap distribution character-istics within the material,the intrinsic mechanism of epoxy composites to inhibit the growth of the electrical tree at different frequencies is discussed.It can be concluded that more deep traps and blocking effect are introduced by doping nano-MgO into EP bulks,which can improve the electrical tree resistance performance of EP composites in a wide frequency range.
基金supported by National Basic Research Program of China(973 Program)under Grant 2011CB209400。
文摘High electric field and temperatures can result in electrical property degradation of oil-paper insulation and accelerate its aging process.This paper describes the regulation of space charge in the process of electro-thermal aging.Electric field distortion and differences in characteristic parameters during electro-thermal aging are analyzed,along with the effects of electro-thermal aging on space charge from the perspective of trap energy.High temperature and an electric field are used to accelerate the aging of oil-paper,and space charge characteristics are measured using the pulsed electro-acoustic(PEA)method throughout the electro-thermal aging.Based on results obtained,it can be concluded that homo-charge injection occurs at the anode and the type of the charge injection at the cathode varies throughout the electro-thermal aging;the decrease of permittivity during aging allows for space charge injection to take place;growth of trap depth makes the space charge accumulate in the middle of the sample;and space charge accumulation after electro-thermal aging results in inner electric field distortion,which leads to large current and decreased breakdown in voltages.
基金National Natural Science Foundation of China,Grant/Award Numbers:51977186,52037009Science and Technology Department of Xinjiang Uyghur Autonomous Region,Grant/Award Number:XJ2019G035。
文摘Incorporating positive temperature coefficient(PTC)ceramic particles into polymers provides a prospective alternative solution for suppressing severe electric field distortions caused by negative temperature coefficient(NTC)of electrical resistivity within polymer insulation in high voltage direct current cable.The effect of the Curie temperature of PTC particles on the inhibition of the NTC effect of cross-linked polyethylene(XLPE)is investigated in this study.Positive temperature coefficient particles with varied Curie temperatures are surface-modified and melt blending with XLPE.The modified particles are dispersed on averagely in the matrix.The electrical resistivity,space charge behaviour,and direct current(DC)electrical breakdown strength of the samples are investigated at different temperatures,exploring the effect of the Curie temperature of PTC particles on suppressing the NTC effect of XLPE.It is demonstrated that the reduction in Curie temperature can further suppress the NTC effect of XLPE,enhance the DC strength at elevated temperatures,and inhibit the internal space charge accumulation.The reduction in the Curie temperatures means that the initiation of the PTC effect advances,exhibiting a higher potential barrier and inhibiting the NTC effect more effectively.This work may give a reference for improving the temperature stability of DC properties for XLPE cable insulation.