Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-...Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-hard and is neither sub-modular nor super-modular. Furthermore, in the case of the Kalman filter(KF) fusion algorithm, accurate statistical characteristics of noise are difficult to obtain, and this leads to an unsatisfactory fusion result. To settle the referred cases, a distributed and adaptive weighted fusion algorithm based on KF has been proposed in this paper. In this method, on the basis of the pseudo prior probability of the estimated state of each source, the reliability of the sources is evaluated and the optimal set is selected on a certain threshold. Experiments were performed on multi-source pedestrian dead reckoning for verifying the proposed algorithm. The results obtained from these experiments indicate that the optimal set can be selected accurately with minimal computation, and the fusion error is reduced by 16.6% as compared to the corresponding value resulting from the algorithm without improvements.The proposed adaptive source reliability and fusion weight evaluation is effective against the varied-noise multi-source fusion system, and the fusion error caused by inaccurate statistical characteristics of the noise is reduced by the adaptive weight evaluation.The proposed algorithm exhibits good robustness, adaptability,and value on applications.展开更多
Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed.The ceramic waste materials are often directly buried in the ground or placed in ...Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed.The ceramic waste materials are often directly buried in the ground or placed in an open dump,and the accumulation of ceramic waste contributes to environmental pollution,which makes the recycling of ceramic waste quite urgent.Owing to the pozzolanic activity,excellent mechanical properties and durability,industrial ceramic waste is considered as a suitable substitute for cement or natural aggregates to fabricate renewable concrete.In this paper,the pozzolanic activity of ceramic waste and the workability,mechanical performance,and durability of ceramic concrete are discussed.In addition,the most recent research results pertaining to ceramic concrete are reviewed.Ground ceramic powder improves the workability,compressive strength,resistance to chloride penetration,and carbonation resistance of concrete to a certain extent.Concrete containing ceramic as the aggregate has a lower mechanical performance than ordinary concrete.However,the resistance to chloride penetration,freeze-thaw resistance,and high-temperature resistance of ceramic concrete are remarkable.Ceramic concrete is environmentally friendly,requires fewer energy resources to manufacture than ordinary concrete,and has excellent engineering properties.However,further research is required for future engineering applications.展开更多
Using recycled aggregate(RA)and slag instead of natural aggregate(NA)and cement can reduce greenhouse gas emissions(GHGE)and achieve effective waste recovery.In recent years,RA has been widely used to replace NA in co...Using recycled aggregate(RA)and slag instead of natural aggregate(NA)and cement can reduce greenhouse gas emissions(GHGE)and achieve effective waste recovery.In recent years,RA has been widely used to replace NA in concrete.Every year,several researchers conduct investigations on the mechanical performance and durability of recycled aggregate concrete(RAC).Due to the loose and porous material properties of RA,the mechanical properties and durability of RAC,such as strength,carbonation resistance,permeability resistance and chloride ion penetration resistance,are greatly reduced compared with natural aggregate concrete.In contrast,concrete containing slag instead of NA and cement generally improved the strength of concrete and reduced the internal porosity of materials.Herein,we discuss the effects of RA and slag on the workability,compressive strength,splitting tensile strength,ultrasonic pulse velocity(UPV)value,and elastic modulus of concrete.The relationships between the compressive strength and the splitting tensile strength,UPV value,and elastic modulus are discussed,and the optimal substitution method is proposed.In addition,various equations for calculating the compressive strength of concrete based on performance factors related to the compressive strength are summarized.展开更多
文摘Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-hard and is neither sub-modular nor super-modular. Furthermore, in the case of the Kalman filter(KF) fusion algorithm, accurate statistical characteristics of noise are difficult to obtain, and this leads to an unsatisfactory fusion result. To settle the referred cases, a distributed and adaptive weighted fusion algorithm based on KF has been proposed in this paper. In this method, on the basis of the pseudo prior probability of the estimated state of each source, the reliability of the sources is evaluated and the optimal set is selected on a certain threshold. Experiments were performed on multi-source pedestrian dead reckoning for verifying the proposed algorithm. The results obtained from these experiments indicate that the optimal set can be selected accurately with minimal computation, and the fusion error is reduced by 16.6% as compared to the corresponding value resulting from the algorithm without improvements.The proposed adaptive source reliability and fusion weight evaluation is effective against the varied-noise multi-source fusion system, and the fusion error caused by inaccurate statistical characteristics of the noise is reduced by the adaptive weight evaluation.The proposed algorithm exhibits good robustness, adaptability,and value on applications.
基金support received from Natural Science Foundation of Henan(Grant No.212300410018)National Natural Science Foundation of China(Grant No.U2040224)+1 种基金Program for Innovative Research Team(in Science and Technology)in University of Henan Province of China(Grant No.20IRTSTHN009)the Research and Develop Project of China Construction Seventh Engineering Division Co.,Ltd.(Grant No.CSCEC7b-2021-Z-11).
文摘Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed.The ceramic waste materials are often directly buried in the ground or placed in an open dump,and the accumulation of ceramic waste contributes to environmental pollution,which makes the recycling of ceramic waste quite urgent.Owing to the pozzolanic activity,excellent mechanical properties and durability,industrial ceramic waste is considered as a suitable substitute for cement or natural aggregates to fabricate renewable concrete.In this paper,the pozzolanic activity of ceramic waste and the workability,mechanical performance,and durability of ceramic concrete are discussed.In addition,the most recent research results pertaining to ceramic concrete are reviewed.Ground ceramic powder improves the workability,compressive strength,resistance to chloride penetration,and carbonation resistance of concrete to a certain extent.Concrete containing ceramic as the aggregate has a lower mechanical performance than ordinary concrete.However,the resistance to chloride penetration,freeze-thaw resistance,and high-temperature resistance of ceramic concrete are remarkable.Ceramic concrete is environmentally friendly,requires fewer energy resources to manufacture than ordinary concrete,and has excellent engineering properties.However,further research is required for future engineering applications.
基金support received from National Natural Science Foundation of China(Grant No.U2040224)Natural Science Foundation of Henan(Grant No.212300410018)Program for Innovative Research Team(in Science and Technology)in University of Henan Province of China(Grant No.20IRTSTHN009).
文摘Using recycled aggregate(RA)and slag instead of natural aggregate(NA)and cement can reduce greenhouse gas emissions(GHGE)and achieve effective waste recovery.In recent years,RA has been widely used to replace NA in concrete.Every year,several researchers conduct investigations on the mechanical performance and durability of recycled aggregate concrete(RAC).Due to the loose and porous material properties of RA,the mechanical properties and durability of RAC,such as strength,carbonation resistance,permeability resistance and chloride ion penetration resistance,are greatly reduced compared with natural aggregate concrete.In contrast,concrete containing slag instead of NA and cement generally improved the strength of concrete and reduced the internal porosity of materials.Herein,we discuss the effects of RA and slag on the workability,compressive strength,splitting tensile strength,ultrasonic pulse velocity(UPV)value,and elastic modulus of concrete.The relationships between the compressive strength and the splitting tensile strength,UPV value,and elastic modulus are discussed,and the optimal substitution method is proposed.In addition,various equations for calculating the compressive strength of concrete based on performance factors related to the compressive strength are summarized.