期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Efficacy and Safety of Combined Bedaquiline and Delamanid Use among Patients with Multidrug-Resistant Tuberculosis in Beijing,China
1
作者 Can Guo Lihui Nie +6 位作者 Yanhua Song Rongmei Liu Xiaoguang Wu yuanyuan shang Xuxia Zhang Yu Pang Mengqiu Gao 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第10期1195-1203,共9页
Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-spe... Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-specialized hospital.We aimed to present clinical efficacy and safety data for Chinese patients.Methods This case-control study included patients with multidrug-resistant tuberculosis(MDR-TB)treated with BDQ alone or BDQ plus DLM.Results A total of 96 patients were included in this analysis:64 in the BDQ group and 32 in the BDQ+DLM group.Among the 96 patients with positive sputum culture at the initiation of BDQ alone or BDQ combined with DLM,46 patients(71.9%)in the BDQ group and 29(90.6%)in the BDQ-DLM group achieved sputum culture conversion during treatment.The rate of sputum culture conversion did not differ between the two groups.The time to sputum culture conversion was significantly shorter in the BDQ-DLM group than in the BDQ group.The most frequent adverse event was QTc interval prolongation;however,the frequency of adverse events did not differ between the groups.Conclusion In conclusion,our results demonstrate that the combined use of BDQ and DLM is efficacious and tolerable in Chinese patients infected with MDR-TB.Patients in the BDQ-DLM group achieved sputum culture conversion sooner than those in the BDQ group. 展开更多
关键词 Multidrug resistant TUBERCULOSIS Bedaquiline Delamanid EFFICACY Safety
下载PDF
Mg-based materials for hydrogen storage 被引量:15
2
作者 yuanyuan shang Claudio Pistidda +2 位作者 Gökhan Gizer Thomas Klassen Martin Dornheim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1837-1860,共24页
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w... Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity. 展开更多
关键词 Hydrogen storage materials Magnesium-based hydrides Metal hydrides NANOSTRUCTURES Catalysts Hydrogenation and dehydrogenation Kinetics THERMODYNAMICS Activation energy
下载PDF
Scalable Synthesis of LiF-rich 3D Architected Li Metal Anode via Direct Lithium-Fluoropolymer Pyrolysis to Enable Fast Li Cycling 被引量:3
3
作者 yuanyuan shang Tiankuo Chu +1 位作者 Baohui Shi Kun(Kelvin)Fu 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期213-221,共9页
Lithium metal anode holds an important position in fast-charging batteries.But lithium dendrite issues tend to exacerbate at high currents.Li F can be considered as an effective way to improve the Li metal surface ele... Lithium metal anode holds an important position in fast-charging batteries.But lithium dendrite issues tend to exacerbate at high currents.Li F can be considered as an effective way to improve the Li metal surface electrochemical stability to achieve high power and high energy.However,most of reported work are relying on in situ formation of a 2D Li F on Li metal in liquid electrolyte,which limits the scalability and plated Li quantity.Here,we address this challenge and report a scalable synthesis of Li F-rich 3D architected Li metal anode via a direct pyrolysis of molten lithium and fluoropolymer to enable fast Li charging with high current density(20 mA cm-2)and high areal capacity(20 m Ah cm-2).The 3D structure is synthesized by the pyrolysis of fluoropolymer with Li metal and results show high similarity to the pristine electrolyte-derived solid-electrolyte-interphase(SEI).This concept using pyrolysis of fluoropolymer with Li-containing active materials could be also extended to modify Li metal oxide cathode(e.g.,Li Ni0.5Mn1.5O4)for mixed conductive interphase and engineer Li solid ion conductors(e.g.,Li garnet-type oxides)for interface stabilization andframework design. 展开更多
关键词 3D architected material fast charging Li-dendrite free LiF-rich Li metal pyrolysis of fluoropolymer
下载PDF
A regeneration system using cotyledons and cotyledonary node explants of Toona ciliata 被引量:2
4
作者 Huiyun Song Wenmai Mao +3 位作者 yuanyuan shang Wei Zhou Pei Li Xiaoyang Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第3期967-974,共8页
We used the cotyledons and cotyledonary nodes of Toona ciliata(Chinese mahogany)as explants to examine callus and adventitious shoot induction when exposed to different ratios of hormones.We also investigated the effe... We used the cotyledons and cotyledonary nodes of Toona ciliata(Chinese mahogany)as explants to examine callus and adventitious shoot induction when exposed to different ratios of hormones.We also investigated the effects of seedling age,inoculation method,and genotype on the efficient regeneration of T.ciliata.The results showed that different genotypes exhibited significantly different callus induction efficiency.The cotyledons and cotyledonary nodes of 20-day seedlings inoculated onto MS medium with 0.5 mg/L 6-benzylaminopurine(6-BA),0.5 mg/L kinetin(KT)and 0.05 mg/L 1-naphthylacetic acid(NAA)achieved a greater regeneration rate than did other concentrations of cytokinin and auxin.The numbers of shoots per cotyledon and cotyledonary node explant were 7.33 and 6.67.The optimal inoculation method for cotyledons was that the distal end of the explants was placed in contact with the medium.The optimal adventitious shoot differentiation medium for cotyledon explants was MS medium containing 0.3 mg/L 6-BA and 0.2 mg/L NAA,producing a 3.4 cm height of shoot on average.This study established an efficient regeneration system for T.ciliata with cotyledons and cotyledonary nodes as explants. 展开更多
关键词 COTYLEDONS Cotyledonary nodes Regeneration system Toona ciliata
下载PDF
Expression of gamma-aminobutyric acid type A receptor α_2 subunit in the dorsal root ganglion of rats with sciatic nerve injury 被引量:1
5
作者 Yu Lian Yang Wang +5 位作者 Ketao Ma Lei Zhao Zhongshuang Zhang yuanyuan shang Junqiang Si Li Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第32期2492-2499,共8页
The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-media... The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-mediated presynaptic inhibition may be an important cause of neuropathic pain. γ-aminobutyric acid-mediated presynaptic inhibition is related to the current strength of γ-aminobutyric acid A receptor activation. In view of this, the whole-cell patch-clamp technique was used here to record the change in muscimol activated current of dorsal root ganglion neurons in a chronic constriction injury model. Results found that damage in rat dorsal root ganglion neurons following application of muscimol caused concentration-dependent activation of current, and compared with the sham group, its current strength and γ-aminobutyric acid A receptor protein expression decreased. Immunofluorescence revealed that γ-aminobutyric acid type A receptor α2 subunit protein expression decreased and was most obvious at 12 and 15 days after modeling. Our experimental findings confirmed that the y-aminobutyric acid type A receptor α2 subunit in the chronic constriction injury model rat dorsal root ganglion was downregulated, which may be one of the reasons for the reduction of injury in dorsal root ganglion neurons following muscimol-activated currents. 展开更多
关键词 γ-aminobutyric acid γ-aminobutyric acid type A receptor α2 subunit neuropathic pain dorsal root ganglion whole-cell patch clamp IMMUNOFLUORESCENCE primary afferent depolarization paw withdrawal latency MUSCIMOL
下载PDF
Ultra-thin robust CNT@GC film integrating effective electromagnetic shielding and flexible Joule heating
6
作者 Ding Zhang Chunhui Wang +7 位作者 Meng Li Weixue Meng Shipeng Zhang Mengdan Yang Xinguang Huang Yingjiu Zhang yuanyuan shang Anyuan Cao 《Nano Research》 SCIE EI CSCD 2024年第5期3462-3471,共10页
The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pro... The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pronounced in the realm of flexible and portable electronic products.Here,we developed an ultra-thin film(CNT@GC)in which the glassy carbon(GC)layer wrapped around and welded carbon nanotubes(CNTs)to form a core-shell network structure,leading to exceptional tensile strength(327.2 MPa)and electrical conductivity(2.87×10^(5) S·m^(−1)).The CNT@GC film achieved EMI SE of 60 dB at a thickness of 2µm after post-acid treatment and high specific SE of 3.49×10^(5) dB·cm^(2)·g^(−1),with comprehensive properties surpassing those of the majority of previous shielding materials.Additionally,the CNT@GC film exhibited Joule heating capability,reaching a surface temperature of 135℃at 3 V with a fast thermal response of about 0.5 s,enabling anti-icing/de-icing functionality.This work presented a methodology for constructing a robust CNT@GC film with high EMI shielding performance and exceptional Joule heating capability,demonstrating immense potential in wearable devices,defense,and aerospace applications. 展开更多
关键词 core-shell structure ultra-thin lightweight film robust film electromagnetic shielding Joule heating
原文传递
CNT array-induced nanobubble assembly,nanodisk fabrication and enhanced spectral detection of CNT bundle density
7
作者 Zhiyuan Xia Ziming Ye +9 位作者 Bo Zhao Tingsong Zhang Qi Wang Kun Chen Meng Li Xiaobing Kong Yu-Qing Zheng Enzheng Shi yuanyuan shang Anyuan Cao 《Nano Research》 SCIE EI CSCD 2024年第8期7737-7745,共9页
Alignment,functionalization and detection of carbon nanotube(CNT)bundles are vital processes for utilizing this onedimensional nanomaterial in electronics.Here,we report a polymer-assisted wet shearing method to acqui... Alignment,functionalization and detection of carbon nanotube(CNT)bundles are vital processes for utilizing this onedimensional nanomaterial in electronics.Here,we report a polymer-assisted wet shearing method to acquire super-aligned craterpatterned CNT arrays by nanobubble(NB)self-assembly with a"migrate and aggregation"mechanism and use craters to controllably mold even-sized nanodisks periodically along CNT bundles with tunable densities.This green,low-cost method can be extended to diverse substrates and fabricate different nanodisks.As an example,the Ag-nanodisk-patterned CNT arrays are utilized as substrates of surface-enhanced Raman scattering(SERS)for rhodamine 6G(R6G)and methylene blue(MB)in which a linear correlation is found between the SERS intensity and the CNT bundle density due to the periodic distribution of hot spots,enabling a spectral detection of CNT bundles and their densities by conventional dye molecules.Distinguishing from routine morphological characterization,this spectral method possesses an enhanced accuracy and a detection range of 0.1–2μm^(–1),showing its uniqueness in the detection of CNT bundle density since the intensity of traditional spectral merely relates to the quantity of CNTs,exhibiting its potential in future CNT-bundle-based electronics. 展开更多
关键词 CNT arrays NANOBUBBLES SELF-ASSEMBLY NANODISKS surface-enhanced Raman scattering(SERS)
原文传递
Gallium oxide nanocrystals for self-powered deep ultraviolet photodetectors
8
作者 Yufei Tan Qian Qiao +10 位作者 Tongge Zhao Shulong Chang Zhenfeng Zhang Jinhao Zang Chaonan Lin yuanyuan shang Xun Yang Jiawen Zhou Xuan Yu Xiaoming Yu Chongxin Shan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第23期200-209,共10页
Zero-dimensional colloidal nanocrystals(NCs)of gamma-phased gallium oxide(γ-Ga_(2)O_(3))were success-fully synthesized using the sol-gel method,resulting in nanocrystals with high crystallinity.Heterojunc-tion photod... Zero-dimensional colloidal nanocrystals(NCs)of gamma-phased gallium oxide(γ-Ga_(2)O_(3))were success-fully synthesized using the sol-gel method,resulting in nanocrystals with high crystallinity.Heterojunc-tion photodetectors were then constructed by employing spin-coating technology to depositγ-Ga_(2)O_(3)NCs film of varying thicknesses onto p-type GaN substrates.The resulting devices demonstrated self-power capability through a photovoltaic effect when exposed to ultraviolet light illumination.Notably,a device with a 300 nm thick active layer,annealed in 400℃,exhibited a responsivity of 6.7×10^(-3) A W^(-),a detectivity of 3.10×10^(11) Jones,and an external quantum efficiency of 3.2%under 254 nm light illumination at 0.16 mW cm^(-2),all without the need for an external power supply.These findings suggest promising practical applications for such photodetectors in single-point imaging systems.This study presents a straightforward and viable approach for developing high-performance and self-powered ultraviolet photodetectors based on zero-dimensionalγ-Ga_(2)O_(3)NCs,thereby opening up possibilities for various photonic systems and applications that do not rely on an external power supply. 展开更多
关键词 Ga_(2)O_(3)nanocrystals Sol-gel method Ultraviolet photodetector SELF-POWERED
原文传递
Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode 被引量:11
9
作者 Peixu Li Enzheng Shi +9 位作者 Yanbing Yang yuanyuan shang Qingyu Peng Shiting Wu Jinquan Wei Kunlin Wang Hongwei Zhu Quan Yuan Anyuan Cao Dehai Wu 《Nano Research》 SCIE EI CAS CSCD 2014年第2期209-218,共10页
A carbon nanotube (CNT) sponge contains a three-dimensional conductive nano- tube network, and can be used as a porous electrode for various energy devices. We present here a rational strategy to fabricate a unique ... A carbon nanotube (CNT) sponge contains a three-dimensional conductive nano- tube network, and can be used as a porous electrode for various energy devices. We present here a rational strategy to fabricate a unique CNT@polypyrrole (PPy) core-shell sponge, and demonstrate its application as a highly compressible supercapacitor electrode with high performance. A PPy layer with optimal thickness was coated uniformly on individual CNTs and inter-CNT contact points by electrochemical deposition and crosslinking of pyrrole monomers, resulting in a core-shell configuration. The PPy coating significantly improves specific capacitance of the CNT sponge to above 300 F/g, and simultaneously reinforces the porous structure to achieve better strength and fully elastic structural recovery after compression. The CNT@PPy sponge can sustain 1,000 compression cycles at a strain of 50% while maintaining a stable capacitance (〉 90% of initial value). Our CNT@PPy core-shell sponges with a highly porous network structure may serve as compressible, robust electrodes for supercapacitors and many other energy devices. 展开更多
关键词 carbon nanotube sponge POLYPYRROLE core-shell configuration compressible electrode SUPERCAPACITOR
原文传递
High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes 被引量:9
10
作者 Xuewei Zhao Yizeng Wu +6 位作者 Yunsong Wang Huaisheng Wu Yawei Yang Zhipeng Wang Linxiu Dai yuanyuan shang Anyuan Cao 《Nano Research》 SCIE EI CAS CSCD 2020年第4期1044-1052,共9页
Since Akira Yoshino first proposed the usage of the carbonaceous materials as an anode of lithium ion batteries(LIBs)in 1985,carbonaceous materials such as graphite and graphene have been widely considered as LIB anod... Since Akira Yoshino first proposed the usage of the carbonaceous materials as an anode of lithium ion batteries(LIBs)in 1985,carbonaceous materials such as graphite and graphene have been widely considered as LIB anodes.Here,we explored the application of novel carbonaceous UB anodes incorporating graphene quantum dots(GQDs).We fabricated a freestanding all-carbon electrode based on a porous carbon nanotube(CNT)sponge via a facile in-situ hydrothermal deposition technique,creating coaxial structure of GQD-coated CNTs(GQD@CNTs)through electrostatic interaction and n-n stacking with tunable loading and functionalization.This hybrid structure combined conductive CNTs with highly active GQDs,in which GQDs with predesigned functional groups provided massive storage sites for Li ions and the 3D CNT frameworks avoided the agglomeration of GQDs,together contributing to a high specific capacity(700 mAh·g^-1 at 100 mA·g^-1 after 100 cycles)and rate performance.Even at a high current density of 1,000 mA·g^-1,the reversible specific capacity remained at 483 mAh g-1 after 350 cycles.In particular,the mechanism study demonstrated the important role of oxygen functional groups of GQDs in promoting the performance of the LIB anodes by controlled grafting of GQDs onto various porous-carbon and metal-foam based structures. 展开更多
关键词 graphene quantum dots carbon nanotubes lithium ion batteries anodes oxygen functional groups
原文传递
Improving CNT-Si solar cells by metal chloride-to-oxide transformation 被引量:4
11
作者 Huaisheng Wu Xuewei Zhao +4 位作者 Yizeng Wu Qinghuan Ji Linxiu Dai yuanyuan shang Anyuan Cao 《Nano Research》 SCIE EI CAS CSCD 2020年第2期543-550,共8页
Transitional metal oxides(TMOs)are important functional materials in silicon-based and thin-film optoelectronics.Here,TMOs areapplied in carbon nanotube(CNT)-Si solar cells by spin-coating solutions of metal chlorides... Transitional metal oxides(TMOs)are important functional materials in silicon-based and thin-film optoelectronics.Here,TMOs areapplied in carbon nanotube(CNT)-Si solar cells by spin-coating solutions of metal chlorides that undergo favorable transformation in ambient conditions.An unconventional change in solar cell behavior is observed after coating two particular chlorides(MoCl,and WCls,respectively),characterized by an initial severe degradation followed by gradual recovery and then well surpassing the original performance.Detailed analysis reveals that the formation of correspondina oxides(MoOa and WO.)enables two primary functions on both CNTs(p-type doping)and Si(inducing inversion layer),leading to significant improvement in open-circuit voltage and fill factor,with power conversion efficiencies up to 13.0%(MoOg)and 13.4%(WOg).Further combining with other chlorides to increase the short-circuit current,ultimate cells efficiencies achieve>16%with over 90%retention after 24 h,which are among the highes stable efficiencies reported for CNT-Si solar cells.The transformation of functional layers as demonstrated here has profoundinfluence on the device characteristics,and represents a potential strategy in low-cost manufacturing of next-generation high efficiency photovoltaics. 展开更多
关键词 carbon nanotube(CNT)-Si solar cell chloride to oxide transformation MoO3 and WO3 inversion layer
原文传递
Conductive hydrogels incorporating carbon nanoparticles:A review of synthesis,performance and applications 被引量:3
12
作者 Shipeng Zhang Bo Zhao +8 位作者 Ding Zhang Mengdan Yang Xinguang Huang Lei Han Kun Chen Xinjian Li Rui Pang yuanyuan shang Anyuan Cao 《Particuology》 SCIE EI CSCD 2023年第12期212-231,共20页
As one of the most rapidly expanding materials,hydrogels have gained increasing attention in a variety of fields due to their biocompatibility,degradability and hydrophilic properties,as well as their remarkable adhes... As one of the most rapidly expanding materials,hydrogels have gained increasing attention in a variety of fields due to their biocompatibility,degradability and hydrophilic properties,as well as their remarkable adhesion and stretchability to adapt to different surfaces.Hydrogels combined with carbon-based materials possess enhanced properties and new functionalities,in particular,conductive hydrogels have become a new area of research in the field of materials science.This review aims to provide a comprehensive overview and up-to-date examination of recent developments in the synthesis,properties and applications of conductive hydrogels incorporating several typical carbon nanoparticles such as carbon nanotubes,graphene,carbon dots and carbon nanofibers.We summarize key techniques and mechanisms for synthesizing various composite hydrogels with exceptional properties,and represented applications such as wearable sensors,temperature sensors,supercapacitors and human-computer interaction reported recently.The mechanical,electrical and sensing properties of carbon nanoparticles conductive hydrogels are thoroughly analyzed to disclose the role of carbon nanoparticles in these hydrogels and key factors in the microstructure.Finally,future development of conductive hydrogels based on carbon nanoparticles is discussed including the challenges and possible solutions in terms of microstructure optimization,mechanical and other properties,and promising applications in wearable electronics and multifunctional materials. 展开更多
关键词 Conductive hydrogels Carbon nanoparticles SYNTHESIS Performance and applications
原文传递
A GQD-based composite film as photon down-converter in CNT/Si solar cells 被引量:2
13
作者 Xuewei Zhao Yizeng Wu +3 位作者 Zhiyuan Xia Shulong Chang yuanyuan shang Anyuan Cao 《Nano Research》 SCIE EI CSCD 2021年第11期3893-3899,共7页
Graphene quantum dots (GQDs), have unique quantum confinement effects, tunable bandgap and luminescence property, with a wide range of potential applications such as optoelectronic and biomedical areas. However, GQDs ... Graphene quantum dots (GQDs), have unique quantum confinement effects, tunable bandgap and luminescence property, with a wide range of potential applications such as optoelectronic and biomedical areas. However, GQDs usually have a strong tendency toward aggregation especially in making solid films, which will degrade their optoelectronic properties, for example, causing undesired fluorescence quenching. Here, we designed a composite film by embedding GQDs in a polyvinyl pyrrolidone (PVP) matrix through hydrogen bonding with well-preserved fluorescence, with a small addition of acid for compensating the poor conductivity of PVP. As a multifunctional solid coating on carbon nanotube/silicon (CNT/Si) solar cells, the photon down-conversion by GQDs and the PVP anti-reflection layer for visible light lead to enhanced external quantum efficiency (by 12.34% in the ultraviolet (UV) range) and cell efficiency (up to 14.94%). Such advanced optical managing enabled by low-cost, carbon-based quantum dots, as demonstrated in our results, can be applied to more versatile optoelectronic and photovoltaic devices based on perovskites, organic and other materials. 展开更多
关键词 graphene quantum dots polyvinyl pyrrolidone energy-down-shift external quantum efficiency CNT/Si solar cells
原文传递
Mechanical force-induced assembly of one-dimensional nanomaterials 被引量:1
14
作者 Shiting Wu yuanyuan shang Anyuan Cao 《Nano Research》 SCIE EI CAS CSCD 2020年第5期1191-1204,共14页
There have been intensive and continuous research efforts in large-scale controlled assembly of one-dimensional(1D)nanomaterials,since this is the most effective and promising route toward advanced functional systems ... There have been intensive and continuous research efforts in large-scale controlled assembly of one-dimensional(1D)nanomaterials,since this is the most effective and promising route toward advanced functional systems including integrated nano-circuits and flexible electronic devices.To date,numerous assembly approaches have been reported,showing considerable progresses in developing a variety of 1D nanomaterial assemblies and integrated systems with outstanding performance.However,obstacles and challenges remain ahead.Here,in this review,we summarize most widely studied assembly approaches such as Langmuir-Blodgett technique,substrate release/stretching,substrate rubbing and blown bubble films,depending on three types of external forces:compressive,tensile and shear forces.We highlight the important roles of these mechanical forces in aligning 1D nanomaterials such as semiconducting nanowires and carbon nanotubes,and discuss each approach on their effectiveness in achieving high-degree alignment,distinct characteristics and major limitations.Finally,we point out possible research directions in this field including rational control on the orientation,density and registration,toward scale-up and cost-effective manufacturing,as well as novel assembled systems based on 1D heterojunctions and hybrid structures. 展开更多
关键词 one-dimensional(1D)nanomaterials ASSEMBLY compressive force tensile force shear force
原文传递
Integrated sensing from the synergetic color change of the center/brush of cholesteric liquid crystal particles 被引量:1
15
作者 yuanyuan shang Chenglin Zheng +3 位作者 Guochun Zhang Dong Chen Jingxia Wang Lei Jiang 《Science China Materials》 SCIE EI CAS CSCD 2022年第9期2565-2577,共13页
Cholesteric liquid crystal(CLC)particles can adaptively respond to constant changes in external stimuli and thus are widely used in solvent-sensing,pattern fabrication,and anti-counterfeiting.Previous studies discusse... Cholesteric liquid crystal(CLC)particles can adaptively respond to constant changes in external stimuli and thus are widely used in solvent-sensing,pattern fabrication,and anti-counterfeiting.Previous studies discussed the color change at the center of the particles for various applications.However,few studies analyzed the color change of the brush structure of particles in response to various applications because of the complicated birefringence effect.In this paper,we present a novel integrated sensing system based on the synergetic color change from the center and the brush structure of CLC particles.This system provides abundant and additional sensing information relative to the traditional system.CLC particles are prepared by mixing reactive mesogens,a reactive chiral dopant,a non-reactive LC molecule,and a photoinitiator by using a microfluidic device and subsequent photopolymerization.The CLC particles exhibit gorgeous color at the center and brush structure upon various solvent stimuli because of the Bragg reflection and the birefringence effect,which is explained by the possible color-changing mechanism introduced in this paper.For proof-of-concept applications,such color-changing polymer particles are demonstrated in multi-solvent-sensing detection and pattern display.This study provides new insights into the development of stimuli-responsive advanced functional materials with tailorable nanostructures toward technological applications ranging from sensing to display. 展开更多
关键词 cholesteric liquid crystal particles integrated-sensing center-brush structure synergetic color change
原文传递
High-efficiency CNT-Si solar cells based on a collaborative system enabled by oxide penetration
16
作者 Xuewei Zhao Wenjing Xu +6 位作者 Yizeng Wu Huaisheng Wu Zhiyuan Xia Huiyi Xu yuanyuan shang Jinquan Wei Anyuan Cao 《Nano Research》 SCIE EI CSCD 2022年第3期2497-2504,共8页
Carbon nanotube-silicon(CNT-Si)solar cells represent one of the alternative photovoltaic techniques with potential for low cost and high efficiency.Here,we report a method to improve solar cell performance by depositi... Carbon nanotube-silicon(CNT-Si)solar cells represent one of the alternative photovoltaic techniques with potential for low cost and high efficiency.Here,we report a method to improve solar cell performance by depositing conventional transitional metal oxides such as WO_(3)and establishing a collaborative system,in which CNTs are well-embedded within the WO_(3)layer and both of them are in close contact to Si substrate.This unique collaborative system optimizes the overall energy conversion process including the light absorption(antireflection by WO_(3)),carrier separation(forming quasi p-n junction)and charge collection(CNT conductive network throughout the oxide layer).Combining with our previous TiO_(2)-coating and HNO_(3)-doping techniques,a solar cell efficiency of>18%at an active area of 0.09 cm 2(air mass 1.5,100 mW/cm^(2))was achieved.The oxide-enhanced CNT-Si solar cells which integrate the advantages of traditional semiconductors and novel nanostructures represent a promising route toward next-generation high-performance silicon-based photovoltaics. 展开更多
关键词 carbon nanotube-silicon(CNT-Si)solar cell high-efficiency WO_(3) collaborative system
原文传递
Amylin:new insight into pathogenesis,diagnosis,and prognosis of non-insulin-dependent diabetesmellitus-related cardiomyopathy
17
作者 Jiaying Xie Zhoujie Tong +6 位作者 Longfei Shen yuanyuan shang Yulin Li Bin Lu Weixuan Ma Wei Zhang Ming Zhong 《Emergency and Critical Care Medicine》 2022年第1期32-38,共7页
Co-secretion with insulin,highly amyloidogenic human amylin is considered to contribute to the initiation and progression of diabetic heart complications,despite other situations such as hypertension and atheroscleros... Co-secretion with insulin,highly amyloidogenic human amylin is considered to contribute to the initiation and progression of diabetic heart complications,despite other situations such as hypertension and atherosclerosis.In response to insulin resistance,hyperinsulinemia,and consequently hyperamylinemia,is common in prediabetic patients,where highly concentrated amylin is prone to form amylin oligomers,which further assemble into fibrils and amyloids with high b-sheet content.The infusion and deposition of oligomeric amylin in myocytes cause a series of consequences,including cytosolic Ca^(2+)dysregulation,calmodulin activation,myocyte hypertrophy,and ventricular stiffness,eventually leading to heart failure.In this review,we present the latest reports of amylin-related heart complications,provide new insights,and state the underlying pathogenesis,diagnosis,possible treatment,and prevention of diabetic cardiomyopathy. 展开更多
关键词 AMYLIN AMYLOID Diabetic cardiomyopathy a-helix b-sheet
原文传递
Highly efficient fiber-shaped organic solar cells toward wearable flexible electronics
18
作者 Dan Lv Qianqing Jiang +1 位作者 yuanyuan shang Dianyi Liu 《npj Flexible Electronics》 SCIE 2022年第1期382-390,共9页
Fiber-shaped solar cells(FSCs)show great potential to act as the power source in the wearable electronics field.Due to the unique advantages of the fiber-shaped organic solar cells(FOSCs),such as all-solid-state,ease ... Fiber-shaped solar cells(FSCs)show great potential to act as the power source in the wearable electronics field.Due to the unique advantages of the fiber-shaped organic solar cells(FOSCs),such as all-solid-state,ease of fabrication,and environmental friendliness,FOSCs are the strongest candidate among all types of FSCs for wearable electronics.However,the development of FOSCs is seriously lagging behind other types of FSCs.In this work,we demonstrate the efficient FOSCs with non-fullereneacceptors(NFAs)-based light-harvesting materials.The FOSCs present efficiencies exceeding 9%under AM 1.5 G irradiation conditions.The performance influence factors including hole/electron transport layers,active layer,counter electrodes,solvents,and especially,the environmental humidity is systematically studied.The FOSCs not only can easily drive the electrical devices but also can be woven into the textile to charge the smartwatch.The study exhibits the great potential to apply the FOSCs as the power supply source in the wearable electronic field. 展开更多
关键词 shaped fiber exceeding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部