期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Efficient Trap Passivator for Perovskite Solar Cells:Poly(propylene glycol)bis(2‑aminopropyl ether) 被引量:2
1
作者 Ningli Chen Xiaohui Yi +6 位作者 Jing Zhuang yuanzhi wei Yanyan Zhang Fuyi Wang Shaokui Cao Cheng Li Jizheng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期251-263,共13页
Perovskite solar cells(PSCs)are regarded as promising candidates for future renewable energy production.High-density defects in the perovskite films,however,lead to unsatisfactory device performances.Here,poly(propyle... Perovskite solar cells(PSCs)are regarded as promising candidates for future renewable energy production.High-density defects in the perovskite films,however,lead to unsatisfactory device performances.Here,poly(propylene glycol)bis(2-aminopropyl ether)(PEA)additive is utilized to passivate the trap states in perovskite.The PEA molecules chemically interact with lead ions in perovskite,considerably passivate surface and bulk defects,which is in favor of charge transfer and extraction.Furthermore,the PEA additive can efficiently block moisture and oxygen to prolong the device lifetime.As a result,PEA-treated MAPbI3(MA:CH3NH3)solar cells show increased power conversion efficiency(PCE)(from 17.18 to 18.87%)and good longterm stability.When PEA is introduced to(FAPbI3)1-x(MAPbBr3)x(FA:HC(NH2)2)solar cells,the PCE is enhanced from 19.66 to 21.60%.For both perovskites,their severe device hysteresis is efficiently relieved by PEA. 展开更多
关键词 Defects Grain boundaries PASSIVATION Stability Perovskite solar cells
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部