Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins...Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.展开更多
A new framework of light coherence optimization is proposed to design non-ideal broadband achromatic lenses,enabling large-scale flat lenses'implementation and high performance.The strategy paves the way for pract...A new framework of light coherence optimization is proposed to design non-ideal broadband achromatic lenses,enabling large-scale flat lenses'implementation and high performance.The strategy paves the way for practical planar optical devices and full-color imaging systems.展开更多
Optical microcavities play a significant role in the study of classical and quantum chaos.To date,most experimental explorations of their internal wave dynamics have focused on the properties of their inputs and outpu...Optical microcavities play a significant role in the study of classical and quantum chaos.To date,most experimental explorations of their internal wave dynamics have focused on the properties of their inputs and outputs,without directly interrogating the dynamics and the associated mode patterns inside.As a result,this key information is rarely retrieved with certainty,which significantly restricts the verification and understanding of the actual chaotic motion.Here we demonstrate a simple and robust approach to directly and rapidly map the internal mode patterns in chaotic microcavities.By introducing a local index perturbation through a pump laser,we report a spectral response of optical microcavities that is proportional to the internal field distribution.With this technique,chaotic modes with staggered mode spacings can be distinguished.Consequently,a complete chaos assisted tunneling(CAT)and its time-reversed process are experimentally verified in the optical domain with unprecedented certainty.展开更多
文摘Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.
文摘A new framework of light coherence optimization is proposed to design non-ideal broadband achromatic lenses,enabling large-scale flat lenses'implementation and high performance.The strategy paves the way for practical planar optical devices and full-color imaging systems.
基金the financial support from National Natural Science Foundation of China under Grant No.2018YFB2200400the National Science Foundation(JCYJ20180306172041577 NSF(61975041),JCYJ20180306172041577 NSF(11974092))the Shenzhen Fundamental research projects(JCYJ20180507183532343,JCYJ20180507184613841).
文摘Optical microcavities play a significant role in the study of classical and quantum chaos.To date,most experimental explorations of their internal wave dynamics have focused on the properties of their inputs and outputs,without directly interrogating the dynamics and the associated mode patterns inside.As a result,this key information is rarely retrieved with certainty,which significantly restricts the verification and understanding of the actual chaotic motion.Here we demonstrate a simple and robust approach to directly and rapidly map the internal mode patterns in chaotic microcavities.By introducing a local index perturbation through a pump laser,we report a spectral response of optical microcavities that is proportional to the internal field distribution.With this technique,chaotic modes with staggered mode spacings can be distinguished.Consequently,a complete chaos assisted tunneling(CAT)and its time-reversed process are experimentally verified in the optical domain with unprecedented certainty.