期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Unveiling Cloud Vertical Structures over the Interior Tibetan Plateau through Anomaly Detection in Synergetic Lidar and Radar Observations
1
作者 Wei ZHAO Yinan WANG +9 位作者 Yongheng BI Xue WU Yufang TIAN Lingxiao WU Jingxuan LUO Xiaoru HU Zhengchao QI Jian LI yubing pan Daren LYU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第12期2381-2398,共18页
Cloud vertical structure(CVS)strongly affects atmospheric circulation and radiative transfer.Yet,long-term,groundbased observations are scarce over the Tibetan Plateau(TP)despite its vital role in global climate.This ... Cloud vertical structure(CVS)strongly affects atmospheric circulation and radiative transfer.Yet,long-term,groundbased observations are scarce over the Tibetan Plateau(TP)despite its vital role in global climate.This study utilizes ground-based lidar and Ka-band cloud profiling radar(KaCR)measurements at Yangbajain(YBJ),TP,from October 2021 to September 2022 to characterize cloud properties.A satisfactorily performing novel anomaly detection algorithm(LevelShiftAD)is proposed for lidar and KaCR profiles to identify cloud boundaries.Cloud base heights(CBH)retrieved from KaCR and lidar observations show good consistency,with a correlation coefficient of 0.78 and a mean difference of-0.06 km.Cloud top heights(CTH)derived from KaCR match the FengYun-4A and Himawari-8 products well.Thus,KaCR measurements serve as the primary dataset for investigating CVSs over the TP.Different diurnal cycles occur in summer and winter.The diurnal cycle is characterized by a pronounced increase in cloud occurrence frequency in the afternoon with an early-morning decrease in winter,while cloud amounts remain high all day,with scattered nocturnal increases in summer.Summer features more frequent clouds with larger geometrical thicknesses,a higher multi-layer ratio,and greater inter-cloud spacing.Around 26%of the cloud bases occur below 0.5 km.Winter exhibits a bimodal distribution of cloud base heights with peaks at 0-0.5 km and 2-2.5 km.Single-layer and geometrically thin clouds prevail at YBJ.This study enriches long-term measurements of CVSs over the TP,and the robust anomaly detection method helps quantify cloud macro-physical properties via synergistic lidar and radar observations. 展开更多
关键词 Ka-band cloud profiling radar LIDAR anomaly detection cloud base heights cloud top heights Tibetan Plateau
下载PDF
Assessing the Influence of Aerosol on Radiation and Its Roles in Planetary Boundary Layer Development
2
作者 Zhigang CHENG yubing pan +7 位作者 Ju LI Xingcan JIA Xinyu ZHANG Pengkun MA Qianqian WANG Junxia DOU Jingjiang ZHANG Jiannong QUAN 《Journal of Meteorological Research》 SCIE CSCD 2021年第2期384-392,共9页
A comprehensive measurement of planetary boundary layer(PBL)meteorology was conducted at 140 and 280 m on a meteorological tower in Beijing,China,to quantify the effect of aerosols on radiation and its role in PBL dev... A comprehensive measurement of planetary boundary layer(PBL)meteorology was conducted at 140 and 280 m on a meteorological tower in Beijing,China,to quantify the effect of aerosols on radiation and its role in PBL development.The measured variables included four-component radiation,temperature,sensible heat flux(SH),and turbulent kinetic energy(TKE)at 140 and 280 m,as well as PBL height(PBLH).In this work,a method was developed to quantitatively estimate the effect of aerosols on radiation based on the PBLH and radiation at the two heights(140 and 280 m).The results confirmed that the weakened downward shortwave radiation(DSR)on hazy days could be attributed predominantly to increased aerosols,while for longwave radiation,aerosols only accounted for around onethird of the enhanced downward longwave radiation.The DSR decreased by 55.2 W m^(-2) on hazy days during noontime(1100–1400 local time).The weakened solar radiation decreased SH and TKE by enhancing atmospheric stability,and hence suppressed PBL development.Compared with clean days,the decreasing rates of DSR,SH,TKE,and PBLH were 11.4%,33.6%,73.8%,and 53.4%,respectively.These observations collectively suggest that aerosol radiative forcing on the PBL is exaggerated by a complex chain of interactions among thermodynamic,dynamic,and radiative processes.These findings shed new light on our understanding of the complex relationship between aerosol and the PBL. 展开更多
关键词 planetary boundary layer(PBL) AEROSOL RADIATION sensible heat flux(SH) TURBULENCE
原文传递
Analysis of Boundary Layer Structure,Turbulence,and Flux Variations before and after the Passage of a Sea Breeze Front Using Meteorological Tower Data
3
作者 Ju LI Junxia DOU +5 位作者 Donald H. LENSCHOW Mingyu ZHOU Lihong MENG Xiaobin QIU yubing pan Jingjiang ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2023年第6期855-877,共23页
A detailed analysis of a sea breeze front(SBF)that penetrated inland in the Beijing–Tianjin–Hebei urban agglomeration of China was conducted.We focused on the boundary layer structure,turbulence intensity,and fluxes... A detailed analysis of a sea breeze front(SBF)that penetrated inland in the Beijing–Tianjin–Hebei urban agglomeration of China was conducted.We focused on the boundary layer structure,turbulence intensity,and fluxes before and after the SBF passed through two meteorological towers in the urban areas of Tianjin and Beijing,respectively.Significant changes in temperature,humidity,winds,CO_(2),and aerosol concentrations were observed as the SBF passed.Differences in these changes at the two towers mainly resulted from their distances from the ocean,boundary layer conditions,and background turbulences.As the SBF approached,a strong updraft appeared in the boundary layer,carrying near-surface aerosols aloft and forming the SBF head.This was followed by a broad downdraft,which destroyed the near-surface inversion layer and temporarily increased the surface air temperature at night.The feeder flow after the thermodynamic front was characterized by low-level jets horizontally,and downdrafts and occasional updrafts vertically.Turbulence increased significantly during the SBF’s passage,causing an increase in the standard deviation of wind components in speed.The increase in turbulence was more pronounced in a stable boundary layer compared to that in a convective boundary layer.The passage of the SBF generated more mechanical turbulences,as indicated by increased friction velocity and turbulent kinetic energy(TKE).The shear term in the TKE budget equation increased more significantly than the buoyancy term.The atmosphere shifted to a forced convective state after the SBF’s passage,with near isotropic turbulences and uniform mixing and diffusion of aerosols.Sensible heat fluxes(latent heat and CO_(2)fluxes)showed positive(negative)peaks after the SBF’s passage,primarily caused by horizontal and vertical transport of heat(water vapor and CO_(2))during its passage.This study enhances understanding of boundary layer changes,turbulences,and fluxes during the passage of SBFs over urban areas. 展开更多
关键词 sea breeze front boundary layer structure TURBULENCE FLUX meteorological tower
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部