Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment.Inspired by nature,researchers have developed various smart stimulus-responsive structures with adjustable prope...Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment.Inspired by nature,researchers have developed various smart stimulus-responsive structures with adjustable properties and functions to address the demands of ever-changing application environments that are becoming more intricate.Among many fabrication methods for stimulus-responsive structures,femtosecond laser direct writing(FsLDW)has received increasing attention because of its high precision,simplicity,true three-dimensional machining ability,and wide applicability to almost all materials.This paper systematically outlines state-of-the-art research on stimulus-responsive structures prepared by FsLDW.Based on the introduction of femtosecond laser-matter interaction and mainstream FsLDW-based manufacturing strategies,different stimulating factors that can trigger structural responses of prepared intelligent structures,such as magnetic field,light,temperature,pH,and humidity,are emphatically summarized.Various applications of functional structures with stimuli-responsive dynamic behaviors fabricated by FsLDW,as well as the present obstacles and forthcoming development opportunities,are discussed.展开更多
The emergence of millimeter-scale soft actuators has signifi-cantly expanded the potential applications in areas such as search and rescue,drug delivery,and human assistance,due to their high flexibility.Despite these...The emergence of millimeter-scale soft actuators has signifi-cantly expanded the potential applications in areas such as search and rescue,drug delivery,and human assistance,due to their high flexibility.Despite these advancements,achieving precise control over the intricate movements of soft crawlers poses a significant challenge.In this study,we have developed an all-optical approach that enables manipulation of propul-sive forces by simultaneously modifying the magnitude and direction of friction forces,thereby enabling complex motions of soft actuators.Importantly,the approach is not constrained by specific actuator shapes,and theoretically,any elongated photothermal actuator can be employed.The actuator was designed with an isosceles trapezoid shape,featuring a top width of 2mm,a bottom width of 4 mm,and a length of 8 mm.Through our,manipulation approach,we showcase a proof-of-concept for complex soft robotic motions,including crawling(achieving speeds of up to 2.25 body lengths per minute),turning,avoiding obstacles,handling and trans-ferring objects approximately twice its own weight,and navi-gating narrow spaces along programmed paths.Our results showcasethis all-optical manipulationapproach as a promising,yet unexplored tool for the precision and wireless control for the development of advanced soft actuators.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 52122511, 52105492, and 62005262)the National Key Research and Development Program of China (No. 2021YFF0502700)+2 种基金the Students’ Innovation and Entrepreneurship Foundation of USTC (Nos. CY2022G32 and XY2022G02CY)the USTC Research Funds of the Double First-Class Initiative (No. YD2340002009)CAS Project for Young Scientists in Basic Research (No. YSBR-049)
文摘Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment.Inspired by nature,researchers have developed various smart stimulus-responsive structures with adjustable properties and functions to address the demands of ever-changing application environments that are becoming more intricate.Among many fabrication methods for stimulus-responsive structures,femtosecond laser direct writing(FsLDW)has received increasing attention because of its high precision,simplicity,true three-dimensional machining ability,and wide applicability to almost all materials.This paper systematically outlines state-of-the-art research on stimulus-responsive structures prepared by FsLDW.Based on the introduction of femtosecond laser-matter interaction and mainstream FsLDW-based manufacturing strategies,different stimulating factors that can trigger structural responses of prepared intelligent structures,such as magnetic field,light,temperature,pH,and humidity,are emphatically summarized.Various applications of functional structures with stimuli-responsive dynamic behaviors fabricated by FsLDW,as well as the present obstacles and forthcoming development opportunities,are discussed.
基金supported by the National Natural Science Foundation of China [62105090,22275048,22411530048]the Fundamental Research Funds for the Central Universities [JZ2023YQTD0074]+2 种基金the National Key R&D Program of China [2021YFF0502700]Anhui Provincial Natural Science Foundation [2008085J22]the USTC Research Funds of the Double First-Class Initiative [YD2340002009].
文摘The emergence of millimeter-scale soft actuators has signifi-cantly expanded the potential applications in areas such as search and rescue,drug delivery,and human assistance,due to their high flexibility.Despite these advancements,achieving precise control over the intricate movements of soft crawlers poses a significant challenge.In this study,we have developed an all-optical approach that enables manipulation of propul-sive forces by simultaneously modifying the magnitude and direction of friction forces,thereby enabling complex motions of soft actuators.Importantly,the approach is not constrained by specific actuator shapes,and theoretically,any elongated photothermal actuator can be employed.The actuator was designed with an isosceles trapezoid shape,featuring a top width of 2mm,a bottom width of 4 mm,and a length of 8 mm.Through our,manipulation approach,we showcase a proof-of-concept for complex soft robotic motions,including crawling(achieving speeds of up to 2.25 body lengths per minute),turning,avoiding obstacles,handling and trans-ferring objects approximately twice its own weight,and navi-gating narrow spaces along programmed paths.Our results showcasethis all-optical manipulationapproach as a promising,yet unexplored tool for the precision and wireless control for the development of advanced soft actuators.