Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pret...Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.展开更多
In this paper, a combined viscoelasticity-viscoplasticity model, coupled with anisotropic damage and moisture effects, is developed for short fiber reinforced polymers (SFRPs) with different fiber contents and subject...In this paper, a combined viscoelasticity-viscoplasticity model, coupled with anisotropic damage and moisture effects, is developed for short fiber reinforced polymers (SFRPs) with different fiber contents and subjected to a variety of strain rates. In our model, a rate-dependent yield surface for the matrix phase is employed to identify initial yielding of the material. When an SFRP is loaded at small deformation before yielding, its viscoelastic behavior can be described using the generalized Maxwell model, while when plasticity occurs, a scalar internal state variable (ISV) is used to capture the hardening behavior caused by the polymeric constituent of the composite. The material degradation due to the moisture absorption of the composite is modeled by employing another type of ISV with different evolution equations. The complicated damage state of the SFRPs is captured by a second rank tensor, which is further decomposed to model the subscale damage mechanisms of micro-voids/cracks nucleation, growth and coalescence. It is concluded that the proposed constitutive model can be used to accurately describe complicated behaviors of SFRPs because the results predicted from the model are in good agreement with the experimental data.展开更多
Two dimensional halide perovskites are emerging as attractive electroluminescent materials for developing high-performance light-emitting devices owing to their unique structures and/or superior optoelectronic propert...Two dimensional halide perovskites are emerging as attractive electroluminescent materials for developing high-performance light-emitting devices owing to their unique structures and/or superior optoelectronic properties.This review begins with an introduction to the working principles of and the key figures for evaluating the performance of LEDs.Secondly,the structure and optoelectronic properties of two dimensional perovskites are summarized and discussed. Their advantages in LED application over their 3D counterparts are systematically analyzed.Following the theoretically discussion,the progresses on the preparation of two dimensional perovskite materials as well as their performances in LEDs have been summarized. At last,several challenges and prospects are presented for achieving high performance 2D perovskite-based LEDs.展开更多
Improving the quality of the perovskite active layer is crucial to obtaining high performance perovskite solar cells(PSCs). In this work, by introducing formic acid into the formamidinium lead iodide(FAPbI3)precursor ...Improving the quality of the perovskite active layer is crucial to obtaining high performance perovskite solar cells(PSCs). In this work, by introducing formic acid into the formamidinium lead iodide(FAPbI3)precursor solution, we managed to achieve reduced colloidal size in the solution, leading to more uniform deposition of FAPbI3 film with lower trap state density and higher carrier mobility. The solar cells based on the FAPbI3 absorber layer modified with formic acid show significantly better photovoltaic performance than that on the reference FAPbI3 film without formic acid. The device performance shows a close correlation with the colloidal size. Within the range studied from 6.7 to 1.0 nm, the smaller the colloidal size is, the higher the solar cell efficiency. More specifically, the cell efficiency is improved from17.82% for the control cell without formic acid to 19.81% when 0.764 M formic acid was used. Formic acid has also been added into a CH3NH3PbI3(MAPbI3) precursor solution, which exhibits a similar effect on the resulting MAPb I3 films and solar cells, with efficiency improved from 16.07% to 17.00%.展开更多
Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells(PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate(TP6)is adopted to passivate surfa...Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells(PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate(TP6)is adopted to passivate surface defects of the perovskite film.It is found that TP6 effectively reduced the surface defects,especially at the grain boundaries where the defects are abundant.Meanwhile,the exposed long alkyl chains and fluorine atoms in the TP6 enhanced the moisture stability of the perovskite film due to its strong hydrophobicity.In addition,the driving force of charge carrier separation and transport is increased by enlarged built-in potential.Consequently,the power conversion efficiency(PCE)of PSCs is significantly improved from 20.59% to 22.41%by increased open-circuit voltage(V_(oc))and fill factor(FF).The unencapsulated device with TP6 treatment exhibits better stability than the control device,and the PCE retains-80%of its initial PCE after 30 days under 15%-25%relative humidity in storage,while the PCE of the control device declines by more than 50%.展开更多
Organic–inorganic single-crystalline perovskites have attracted significant attentions due to their exceptional progress in intrinsic properties' investigation and applications in photovoltaics and optoelectronics. ...Organic–inorganic single-crystalline perovskites have attracted significant attentions due to their exceptional progress in intrinsic properties' investigation and applications in photovoltaics and optoelectronics. In this study, the large perovskite CH3NH3PbI3 single crystal with the largest length of 80 mm was prepared through the method of inverse-temperature crystallization. Meanwhile, the mass production of integrate photodetectors have been fabricated on the single-crystalline wafer and the photoresponse performances were investigated. The results show that the single-crystalline photodetectors have broad spectrum response to 900 nm, rapid response speed(〈40 μs) and excellent stability. These findings are of great importance for future promising perovskite single crystalline for integrated photoelectronic application.展开更多
In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,...In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,CaO particles has been successfully embedded on the bio-char surface.During the catalytic pyrolysis process,CaO/biochar showed a good catalytic performance on the deoxygenation of soybean oil.Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically,higher pyrolysis temperature lead to seriously cracking reactions,lower bio-oil yield and higher gases yield,and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content and lower hydrocarbons contents,the suitable pyrolysis temperature was around 650℃.Under the optimal conditions(650℃ with WHSV at 6.4 h^(−1) and carrier gas flow rate at 100 ml/min),the selectivity(%)of hydrocarbons in the bio-oil was more than 90%.CaO/bio-char catalyst still shows good catalytic deoxygenation activity after 4 cycles.1 g of CaO/bio-char catalyst can catalyze pyrolysis of 32 g of soybean oil to produce high-quality liquid fuel.Bio-char based catalyst has been proved to be a promising catalyst for catalytic conversion of triglyceride-based lipids into high quality liquid biofuel.展开更多
This paper presents a similitude and computational analysis of the performance of a scaled-down model of a paddle wheel style hydrokinetic generator device used for generating power from the flow of a river. The paddl...This paper presents a similitude and computational analysis of the performance of a scaled-down model of a paddle wheel style hydrokinetic generator device used for generating power from the flow of a river. The paddle wheel dimensions used in this work are one-thirtieth scale of the full-size paddle wheel. The reason for simulating the scaled-down model was to prepare for the testing of a scaled-down physical prototype. Computational Fluid Dynamics using ANSYS Fluent 14.0 software was used for the computational analysis. The scaled-down dimensions were used in the simulations to predict the power that can be generated from the scaled size model of the paddle wheel, having carried out similitude analysis between the scaled down size and its full-size. The dimensionless parameters employed in achieving similitude are the Strouhal number, power coefficient, and pressure coefficient. The power estimation of the full-size was predicted from the scaled size of the paddle wheel based on the similitude analysis.展开更多
This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so t...This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.展开更多
Taking Meipi Village and Zhuqiao Village as the research objects,the external space,internal space and architecture form of the ancient villages were compared,and the law and essence of village pattern under different...Taking Meipi Village and Zhuqiao Village as the research objects,the external space,internal space and architecture form of the ancient villages were compared,and the law and essence of village pattern under different cultures were summarized in this article,so as to provide ideas for the preservation and continuation of Jiangxi's history and culture and innovative rural development.展开更多
Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution event...Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution events.However,the gene innovations underlying Leguminosae root nodule symbiosis(RNS)remain largely unknown.Here,we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses.We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection.Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways,particular downstream of chalcone synthase(CHS).Among them,Leguminosae-gain typeⅡchalcone isomerase(CHI)could be further divided into CHI1A and CHI1B clades,which resulted from the products of tandem duplication.Furthermore,the duplicated CHI genes exhibited exon–intron structural divergences evolved through exon/intron gain/loss and insertion/deletion.Knocking down CHI1B significantly reduced nodulation in Glycine max(soybean)and Medicago truncatula;whereas,knocking down its duplication gene CHI1A had no effect on nodulation.Therefore,Leguminosae-gain typeⅡCHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence.This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.展开更多
Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants.The development of soybean cultivars with early maturity adapted to longer days and colder climates of h...Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants.The development of soybean cultivars with early maturity adapted to longer days and colder climates of high latitudes is very important for ensuring normal ripening before frost begins.FUL belongs to the MADS-box transcription factor family and has several duplicated members in soybeans.In this study,we observed that overexpression of GmFULc in the Dongnong 50 cultivar promoted soybean maturity,while GmFULc knockout mutants exhibited late maturity.Chromatin immunoprecipitation sequencing(ChIP-seq)and RNA sequencing(RNA-seq)revealed that GmFULc could bind to the CArG,bHLH and homeobox motifs.Further investigation revealed that GmFULc could directly bind to the CArG motif in the promoters of the GmZTL3 and GmZTL4 genes.Overexpression of GmZTL4 promoted soybean maturity,whereas the ztl4 mutants exhibited delayed maturity.Moreover,we found that the cis element box 4 motif of the GmZTL4 promoter,a motif of light response elements,played an important role in controlling the growth period.Deletion of this motif shortened the growth period by increasing the expression levels of GmZTL4.Functional investigations revealed that short-day treatment promoted the binding of GmFULc to the promoter of GmZTL4 and inhibited the expression of E1 and E1Lb,ultimately resulting in the promotion of flowering and early maturation.Taken together,these findings suggest a novel photoperiod regulatory pathway in which GmFULc directly activates GmZTL4 to promote earlier maturity in soybean.展开更多
Soybean[Glycine max(L.)Merr.]is one of the most important,but a drought-sensitive,crops.Identifying the genes controlling drought tolerance is important in soybean breeding.Here,through a genome-wide association study...Soybean[Glycine max(L.)Merr.]is one of the most important,but a drought-sensitive,crops.Identifying the genes controlling drought tolerance is important in soybean breeding.Here,through a genome-wide association study,we identified one significant association locus,located on chromosome 8,which conferred drought tolerance variations in a natural soybean population.Allelic analysis and genetic validation demonstrated that GmACO1,encoding for a 1-aminocyclopropane-1-carboxylate oxidase,was the causal gene in this association locus,and positively regulated drought tolerance in soybean.Meanwhile,we determined that GmACO1 expression was reduced after rhizobial infection,and that GmACO1 negatively regulated soybean nodule formation.Overall,our findings provide insights into soybean cultivars for future breeding.展开更多
Perovskite solar cells have aroused a worldwide research upsurge in recent years due to their soaring photovoltaic performance,ease of solution processing,and low cost.The power conversion efficiency record is constan...Perovskite solar cells have aroused a worldwide research upsurge in recent years due to their soaring photovoltaic performance,ease of solution processing,and low cost.The power conversion efficiency record is constantly being broken and has recently reached 26.1%in the lab,which is comparable to the established photovoltaic technologies such as crystalline silicon,copper indium gallium selenide and cadmium telluride(CdTe)solar cells.Currently,perovskite solar cells are standing at the entrance of industrialization,where huge opportunities and risks coexist.However,towards commercialization,challenges of up-scaling,stability and lead toxicity still remain,the proper handling of which could potentially lead to the widespread adoption of perovskite solar cells as a low-cost and efficient source of renewable energy.This review gives a holistic analysis of the path towards commercialization for perovskite solar cells.A comprehensive overview of the current state-of-the-art level for perovskite solar cells and modules will be introduced first,with respect to the module efficiency,stability and current status of industrialization.We will then discuss the challenges that get in the way of commercialization and the corresponding strategies to address them,involving the upscaling,the stability and the lead toxicity issue.Insights into the future direction of commercialization of perovskite photovoltaics was also provided,including the flexible perovskite cells and modules and perovskite indoor photovoltaics.Finally,the future perspectives towards commercialization are put forward.展开更多
The first research and experimental results obtained in China of high-accuracy radiometric calibration based on cryogenic radiometer are reported. Uncertainties of cryogenic radiometer and trap detectors at 7 waveleng...The first research and experimental results obtained in China of high-accuracy radiometric calibration based on cryogenic radiometer are reported. Uncertainties of cryogenic radiometer and trap detectors at 7 wavelengths in the visible spectrum (488-786 nm) were less than 0.023% and 0.035% respectively, which proved the reasonability and possibility of establishing and transferring high-accuracy radiometric standards based on detectors.展开更多
Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic ...Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding.Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome(cv. Williams82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.展开更多
基金supported the National Natural Science Foundation of China (42022059,41888101)the Strategic Priority Research Program of the Chinese Academy of Sciences,China (Grant No.XDB26020000)+1 种基金the Key Research Program of the Institute of Geology and Geophysics (CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team (JCTD-2021-05).
文摘Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.
文摘In this paper, a combined viscoelasticity-viscoplasticity model, coupled with anisotropic damage and moisture effects, is developed for short fiber reinforced polymers (SFRPs) with different fiber contents and subjected to a variety of strain rates. In our model, a rate-dependent yield surface for the matrix phase is employed to identify initial yielding of the material. When an SFRP is loaded at small deformation before yielding, its viscoelastic behavior can be described using the generalized Maxwell model, while when plasticity occurs, a scalar internal state variable (ISV) is used to capture the hardening behavior caused by the polymeric constituent of the composite. The material degradation due to the moisture absorption of the composite is modeled by employing another type of ISV with different evolution equations. The complicated damage state of the SFRPs is captured by a second rank tensor, which is further decomposed to model the subscale damage mechanisms of micro-voids/cracks nucleation, growth and coalescence. It is concluded that the proposed constitutive model can be used to accurately describe complicated behaviors of SFRPs because the results predicted from the model are in good agreement with the experimental data.
基金funded by the National Key Research and Development Program of China (2017YFA0204800/2016YFA0202403)the Fundamental Research Funds for the Central Universities (2018CBLZ006)+3 种基金National Natural Science Foundation of China (61604091 and 61674098)the 111 Project (B14041)the Changjiang Scholar and Innovative Research Team (IRT_14R33)the Chinese National 1000-talent-plan program (1110010341)
文摘Two dimensional halide perovskites are emerging as attractive electroluminescent materials for developing high-performance light-emitting devices owing to their unique structures and/or superior optoelectronic properties.This review begins with an introduction to the working principles of and the key figures for evaluating the performance of LEDs.Secondly,the structure and optoelectronic properties of two dimensional perovskites are summarized and discussed. Their advantages in LED application over their 3D counterparts are systematically analyzed.Following the theoretically discussion,the progresses on the preparation of two dimensional perovskite materials as well as their performances in LEDs have been summarized. At last,several challenges and prospects are presented for achieving high performance 2D perovskite-based LEDs.
基金supported by the National Key Research and Development Program of China(NO.2016YFA0202403/2017YFA0204800)the National Natural Science Foundation of China(61604091 and 61674098)+3 种基金the 111 Project(B14041)the National University Research Fund(Grant Nos.GK261001009,GK201603107)the Changjiang Scholar and Innovative Research Team(IRT_14R33)the Chinese National 1000-talent-plan program(1110010341)。
文摘Improving the quality of the perovskite active layer is crucial to obtaining high performance perovskite solar cells(PSCs). In this work, by introducing formic acid into the formamidinium lead iodide(FAPbI3)precursor solution, we managed to achieve reduced colloidal size in the solution, leading to more uniform deposition of FAPbI3 film with lower trap state density and higher carrier mobility. The solar cells based on the FAPbI3 absorber layer modified with formic acid show significantly better photovoltaic performance than that on the reference FAPbI3 film without formic acid. The device performance shows a close correlation with the colloidal size. Within the range studied from 6.7 to 1.0 nm, the smaller the colloidal size is, the higher the solar cell efficiency. More specifically, the cell efficiency is improved from17.82% for the control cell without formic acid to 19.81% when 0.764 M formic acid was used. Formic acid has also been added into a CH3NH3PbI3(MAPbI3) precursor solution, which exhibits a similar effect on the resulting MAPb I3 films and solar cells, with efficiency improved from 16.07% to 17.00%.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA17040506)the National Key Research and Development Program of China (2017YFA0204800/2016YFA0202403)+6 种基金the Key Program project of the National Natural Science Foundation of China (51933010)the National Natural Science Foundation of China (61974085)the 111 Project (B21005)the Changjiang Scholars and Innovative Research Team (IRT_14R33)the National University Research Fund (GK201903051)the Research Start-up Fund from Shaanxi Normal University (1110020142)the Shanxi Science and Technology Department (20201101012).
文摘Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells(PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate(TP6)is adopted to passivate surface defects of the perovskite film.It is found that TP6 effectively reduced the surface defects,especially at the grain boundaries where the defects are abundant.Meanwhile,the exposed long alkyl chains and fluorine atoms in the TP6 enhanced the moisture stability of the perovskite film due to its strong hydrophobicity.In addition,the driving force of charge carrier separation and transport is increased by enlarged built-in potential.Consequently,the power conversion efficiency(PCE)of PSCs is significantly improved from 20.59% to 22.41%by increased open-circuit voltage(V_(oc))and fill factor(FF).The unencapsulated device with TP6 treatment exhibits better stability than the control device,and the PCE retains-80%of its initial PCE after 30 days under 15%-25%relative humidity in storage,while the PCE of the control device declines by more than 50%.
基金support from the National Key Research and Development Program of China(no.2016YFA0202403)National Natural Science Foundation of China(nos.61604091/61674098)+3 种基金the 111 Project(B14041)the National University Research Fund(grant nos.GK261001009,GK201603107)Changjiang Scholar and Innovative Research Team(IRT_14R33)the Chinese National 1000-talent-plan program(1110010341)
文摘Organic–inorganic single-crystalline perovskites have attracted significant attentions due to their exceptional progress in intrinsic properties' investigation and applications in photovoltaics and optoelectronics. In this study, the large perovskite CH3NH3PbI3 single crystal with the largest length of 80 mm was prepared through the method of inverse-temperature crystallization. Meanwhile, the mass production of integrate photodetectors have been fabricated on the single-crystalline wafer and the photoresponse performances were investigated. The results show that the single-crystalline photodetectors have broad spectrum response to 900 nm, rapid response speed(〈40 μs) and excellent stability. These findings are of great importance for future promising perovskite single crystalline for integrated photoelectronic application.
基金The paper was supported by the Natural Science Foundation of China(No.51906112)Natural Science Foundation of Jiangsu Province(No.BK20180548)+1 种基金China Postdoctoral Science Foundation(2019M651852)“Innovation&Entrepreneurship Talents”Introduction Plan of Jiangsu Province.
文摘In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,CaO particles has been successfully embedded on the bio-char surface.During the catalytic pyrolysis process,CaO/biochar showed a good catalytic performance on the deoxygenation of soybean oil.Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically,higher pyrolysis temperature lead to seriously cracking reactions,lower bio-oil yield and higher gases yield,and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content and lower hydrocarbons contents,the suitable pyrolysis temperature was around 650℃.Under the optimal conditions(650℃ with WHSV at 6.4 h^(−1) and carrier gas flow rate at 100 ml/min),the selectivity(%)of hydrocarbons in the bio-oil was more than 90%.CaO/bio-char catalyst still shows good catalytic deoxygenation activity after 4 cycles.1 g of CaO/bio-char catalyst can catalyze pyrolysis of 32 g of soybean oil to produce high-quality liquid fuel.Bio-char based catalyst has been proved to be a promising catalyst for catalytic conversion of triglyceride-based lipids into high quality liquid biofuel.
文摘This paper presents a similitude and computational analysis of the performance of a scaled-down model of a paddle wheel style hydrokinetic generator device used for generating power from the flow of a river. The paddle wheel dimensions used in this work are one-thirtieth scale of the full-size paddle wheel. The reason for simulating the scaled-down model was to prepare for the testing of a scaled-down physical prototype. Computational Fluid Dynamics using ANSYS Fluent 14.0 software was used for the computational analysis. The scaled-down dimensions were used in the simulations to predict the power that can be generated from the scaled size model of the paddle wheel, having carried out similitude analysis between the scaled down size and its full-size. The dimensionless parameters employed in achieving similitude are the Strouhal number, power coefficient, and pressure coefficient. The power estimation of the full-size was predicted from the scaled size of the paddle wheel based on the similitude analysis.
文摘This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.
文摘Taking Meipi Village and Zhuqiao Village as the research objects,the external space,internal space and architecture form of the ancient villages were compared,and the law and essence of village pattern under different cultures were summarized in this article,so as to provide ideas for the preservation and continuation of Jiangxi's history and culture and innovative rural development.
基金The National Natural Science Foundation of China(grant nos.32388201,32300512 and U22A20467)“Strategic Priority Research Program”of the Chinese Academy of Sciences(grant no.XDA24030501)+1 种基金CAS Project for Young Scientists in Basic Research(YSBR-078)the Xplorer Prize。
文摘Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution events.However,the gene innovations underlying Leguminosae root nodule symbiosis(RNS)remain largely unknown.Here,we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses.We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection.Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways,particular downstream of chalcone synthase(CHS).Among them,Leguminosae-gain typeⅡchalcone isomerase(CHI)could be further divided into CHI1A and CHI1B clades,which resulted from the products of tandem duplication.Furthermore,the duplicated CHI genes exhibited exon–intron structural divergences evolved through exon/intron gain/loss and insertion/deletion.Knocking down CHI1B significantly reduced nodulation in Glycine max(soybean)and Medicago truncatula;whereas,knocking down its duplication gene CHI1A had no effect on nodulation.Therefore,Leguminosae-gain typeⅡCHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence.This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.
基金financially supported by National Key Research and Development Program of China(2021YFF1001203)National Natural Science Foundation of China(32072086)Heilongjiang Province Natural Science Foundation(ZD2020C002)。
文摘Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants.The development of soybean cultivars with early maturity adapted to longer days and colder climates of high latitudes is very important for ensuring normal ripening before frost begins.FUL belongs to the MADS-box transcription factor family and has several duplicated members in soybeans.In this study,we observed that overexpression of GmFULc in the Dongnong 50 cultivar promoted soybean maturity,while GmFULc knockout mutants exhibited late maturity.Chromatin immunoprecipitation sequencing(ChIP-seq)and RNA sequencing(RNA-seq)revealed that GmFULc could bind to the CArG,bHLH and homeobox motifs.Further investigation revealed that GmFULc could directly bind to the CArG motif in the promoters of the GmZTL3 and GmZTL4 genes.Overexpression of GmZTL4 promoted soybean maturity,whereas the ztl4 mutants exhibited delayed maturity.Moreover,we found that the cis element box 4 motif of the GmZTL4 promoter,a motif of light response elements,played an important role in controlling the growth period.Deletion of this motif shortened the growth period by increasing the expression levels of GmZTL4.Functional investigations revealed that short-day treatment promoted the binding of GmFULc to the promoter of GmZTL4 and inhibited the expression of E1 and E1Lb,ultimately resulting in the promotion of flowering and early maturation.Taken together,these findings suggest a novel photoperiod regulatory pathway in which GmFULc directly activates GmZTL4 to promote earlier maturity in soybean.
基金supported by the National Key Research and Development Program of China(2022YFD1201503)the National Natural Science Foundation of China(32341033,U22A20467)+1 种基金the Taishan Scholars Program,Hainan Seed Industry Laboratory(B21HJ0002,B23YQ1502)The GG project of the Xinjiang Production and Construction Corps,Provincial Special Fund for Science and Technology Innovation and Development of Agricultural Hightech Industrial Demonstration Area of the Yellow River Delta of Shandong Province(2022SZX15).
文摘Soybean[Glycine max(L.)Merr.]is one of the most important,but a drought-sensitive,crops.Identifying the genes controlling drought tolerance is important in soybean breeding.Here,through a genome-wide association study,we identified one significant association locus,located on chromosome 8,which conferred drought tolerance variations in a natural soybean population.Allelic analysis and genetic validation demonstrated that GmACO1,encoding for a 1-aminocyclopropane-1-carboxylate oxidase,was the causal gene in this association locus,and positively regulated drought tolerance in soybean.Meanwhile,we determined that GmACO1 expression was reduced after rhizobial infection,and that GmACO1 negatively regulated soybean nodule formation.Overall,our findings provide insights into soybean cultivars for future breeding.
基金the National Key Research and Development Program of China(2022YFB3803300 and 2023YFE0116800)Beijing Natural Science Foundation(IS23037).
文摘Perovskite solar cells have aroused a worldwide research upsurge in recent years due to their soaring photovoltaic performance,ease of solution processing,and low cost.The power conversion efficiency record is constantly being broken and has recently reached 26.1%in the lab,which is comparable to the established photovoltaic technologies such as crystalline silicon,copper indium gallium selenide and cadmium telluride(CdTe)solar cells.Currently,perovskite solar cells are standing at the entrance of industrialization,where huge opportunities and risks coexist.However,towards commercialization,challenges of up-scaling,stability and lead toxicity still remain,the proper handling of which could potentially lead to the widespread adoption of perovskite solar cells as a low-cost and efficient source of renewable energy.This review gives a holistic analysis of the path towards commercialization for perovskite solar cells.A comprehensive overview of the current state-of-the-art level for perovskite solar cells and modules will be introduced first,with respect to the module efficiency,stability and current status of industrialization.We will then discuss the challenges that get in the way of commercialization and the corresponding strategies to address them,involving the upscaling,the stability and the lead toxicity issue.Insights into the future direction of commercialization of perovskite photovoltaics was also provided,including the flexible perovskite cells and modules and perovskite indoor photovoltaics.Finally,the future perspectives towards commercialization are put forward.
文摘The first research and experimental results obtained in China of high-accuracy radiometric calibration based on cryogenic radiometer are reported. Uncertainties of cryogenic radiometer and trap detectors at 7 wavelengths in the visible spectrum (488-786 nm) were less than 0.023% and 0.035% respectively, which proved the reasonability and possibility of establishing and transferring high-accuracy radiometric standards based on detectors.
基金supported by the National Natural Science Foundation of China (91531304, 31525018, 31370266, and 31788103)the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA08000000)the State Key Laboratory of Plant Cell and Chromosome Engineering (PCCE-KF-2017-03)
文摘Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding.Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome(cv. Williams82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.