Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
Seawater electrolysis,especially in coastlines,is widely considered as a sustainable way of making clean and high-purity H2 from renewable energy;however,the practical viability is challenged severely by the limited a...Seawater electrolysis,especially in coastlines,is widely considered as a sustainable way of making clean and high-purity H2 from renewable energy;however,the practical viability is challenged severely by the limited anode durability resulting from side reactions of chlorine species.Herein,we report an effective Cl^(−) blocking barrier of NiFe-layer double hydroxide(NiFe-LDH)to harmful chlorine chemistry during alkaline seawater oxidation(ASO),a pre-formed surface-derived NiFe-phosphate(Pi)outerlayer.Specifically,the PO_(4)^(3−)-enriched outer-layer is capable of physically and electrostatically inhibiting Cl−adsorption,which protects active Ni^(3+)sites during ASO.The NiFe-LDH with the NiFe-Pi outer-layer(NiFe-LDH@NiFe-Pi)exhibits higher current densities(j)and lower overpotentials to afford 1 A·cm^(−2)(η1000 of 370 mV versusη1000 of 420 mV)than the NiFe-LDH in 1 M KOH+seawater.Notably,the NiFe-LDH@NiFe-Pi also demonstrates longer-term electrochemical durability than NiFe-LDH,attaining 100-h duration at the j of 1 A·cm^(−2).Additionally,the importance of surface-derived PO_(4)^(3−)-enriched outer-layer in protecting the active centers,γ-NiOOH,is explained by ex situ characterizations and in situ electrochemical spectroscopic studies.展开更多
NH_(3)is an essential feedstock for fertilizer synthesis.Industry-scale NH_(3)synthesis mostly relies on the Haber-Bosch method,however,which suffers from massive CO_(2) emission and high energy consumption.Electrocat...NH_(3)is an essential feedstock for fertilizer synthesis.Industry-scale NH_(3)synthesis mostly relies on the Haber-Bosch method,however,which suffers from massive CO_(2) emission and high energy consumption.Electrocatalytic NO_(3)-reduction is an attractive substitute to the Haber-Bosch method for synthesizing NH_(3)under mild conditions.As this reaction will produce a variety of products,it highly desires efficient and selective electrocatalyst for NH_(3)generation.Here,we report in situ grown Fe_(3)O_(4)particle on stainless steel(Fe_(3)O_(4)/SS)as a high-efficiency electrocatalyst for NO_(3)^(-)reduction to NH_(3).In 0.1 M NaOH with 0.1 M NaNO_(3),such Fe_(3)O_(4)/SS reaches a remarkable Faradaic efficiency of 91.5%and a high NH_(3)yield of 10,145μg·h^(-1)·cm^(-2)at-0.5 V vs.reversible hydrogen electrode(RHE).Furthermore,it owns robust structural and electrochemical stability.This work provides useful guidelines to expand the scope of metallic oxide electrocatalysts for NH_(3)synthesis.The catalytic mechanism is uncovered and discussed further by theoretical calculations.展开更多
Electrosynthesis of hydrogen peroxide(H2O_(2)),as a sustainable alternative to the anthraquinone oxidation method,provides the feasibility of directly generating H_(2)O_(2).Here,we report Cu-doped TiO_(2) as an effici...Electrosynthesis of hydrogen peroxide(H2O_(2)),as a sustainable alternative to the anthraquinone oxidation method,provides the feasibility of directly generating H_(2)O_(2).Here,we report Cu-doped TiO_(2) as an efficient electrocatalyst which exhibits the excellent two-electron oxygen reduction reaction(2e-ORR)performance with respect to the pristine TiO_(2).The Cu doping results in the distortion of TiO_(2) lattice and further forms a large number of oxygen vacancies and Ti^(3+).Such Cu-doped TiO_(2) exhibits a positive onset potential about 0.79 V and high H_(2)O_(2) selectivity about 91.2%.Moreover,it also shows a larger H_(2)O_(2) yield and good stability.Density functional theory(DFT)calculations reveal that Cu dopant not only improves the electrical conductivity of pristine TiO_(2) but reduces the*OOH adsorption energy of active sites,which is beneficial to promote subsequently 2e-ORR process.展开更多
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
基金supported by the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811).
文摘Seawater electrolysis,especially in coastlines,is widely considered as a sustainable way of making clean and high-purity H2 from renewable energy;however,the practical viability is challenged severely by the limited anode durability resulting from side reactions of chlorine species.Herein,we report an effective Cl^(−) blocking barrier of NiFe-layer double hydroxide(NiFe-LDH)to harmful chlorine chemistry during alkaline seawater oxidation(ASO),a pre-formed surface-derived NiFe-phosphate(Pi)outerlayer.Specifically,the PO_(4)^(3−)-enriched outer-layer is capable of physically and electrostatically inhibiting Cl−adsorption,which protects active Ni^(3+)sites during ASO.The NiFe-LDH with the NiFe-Pi outer-layer(NiFe-LDH@NiFe-Pi)exhibits higher current densities(j)and lower overpotentials to afford 1 A·cm^(−2)(η1000 of 370 mV versusη1000 of 420 mV)than the NiFe-LDH in 1 M KOH+seawater.Notably,the NiFe-LDH@NiFe-Pi also demonstrates longer-term electrochemical durability than NiFe-LDH,attaining 100-h duration at the j of 1 A·cm^(−2).Additionally,the importance of surface-derived PO_(4)^(3−)-enriched outer-layer in protecting the active centers,γ-NiOOH,is explained by ex situ characterizations and in situ electrochemical spectroscopic studies.
基金This work was supported by the National Natural Science Foundation of China(No.22072015).
文摘NH_(3)is an essential feedstock for fertilizer synthesis.Industry-scale NH_(3)synthesis mostly relies on the Haber-Bosch method,however,which suffers from massive CO_(2) emission and high energy consumption.Electrocatalytic NO_(3)-reduction is an attractive substitute to the Haber-Bosch method for synthesizing NH_(3)under mild conditions.As this reaction will produce a variety of products,it highly desires efficient and selective electrocatalyst for NH_(3)generation.Here,we report in situ grown Fe_(3)O_(4)particle on stainless steel(Fe_(3)O_(4)/SS)as a high-efficiency electrocatalyst for NO_(3)^(-)reduction to NH_(3).In 0.1 M NaOH with 0.1 M NaNO_(3),such Fe_(3)O_(4)/SS reaches a remarkable Faradaic efficiency of 91.5%and a high NH_(3)yield of 10,145μg·h^(-1)·cm^(-2)at-0.5 V vs.reversible hydrogen electrode(RHE).Furthermore,it owns robust structural and electrochemical stability.This work provides useful guidelines to expand the scope of metallic oxide electrocatalysts for NH_(3)synthesis.The catalytic mechanism is uncovered and discussed further by theoretical calculations.
基金This work was supported by the National Natural ScienceFoundation of China (No. 22072015).
文摘Electrosynthesis of hydrogen peroxide(H2O_(2)),as a sustainable alternative to the anthraquinone oxidation method,provides the feasibility of directly generating H_(2)O_(2).Here,we report Cu-doped TiO_(2) as an efficient electrocatalyst which exhibits the excellent two-electron oxygen reduction reaction(2e-ORR)performance with respect to the pristine TiO_(2).The Cu doping results in the distortion of TiO_(2) lattice and further forms a large number of oxygen vacancies and Ti^(3+).Such Cu-doped TiO_(2) exhibits a positive onset potential about 0.79 V and high H_(2)O_(2) selectivity about 91.2%.Moreover,it also shows a larger H_(2)O_(2) yield and good stability.Density functional theory(DFT)calculations reveal that Cu dopant not only improves the electrical conductivity of pristine TiO_(2) but reduces the*OOH adsorption energy of active sites,which is beneficial to promote subsequently 2e-ORR process.