As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r...As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.展开更多
With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years...With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years,two-dimensional(2D)molybdenum-based(Mo-based)materials have drawn considerable attention due to their exceptional characteristics,including low cost,unique crystal structure,high theoretical capacity and controllable chemical compositions.However,like other transition metal compounds,Mo-based materials are facing thorny challenges to overcome,such as slow electron/ion transfer kinetics and substantial volume changes during the charge and discharge processes.In this review,we summarize the recent progress in developing emerging 2D Mo-based electrode materials for MIBs,encompassing oxides,sulfides,selenides,carbides.After introducing the crystal structure and common synthesis methods,this review sheds light on the charge storage mechanism of several 2D Mo-based materials by various advanced characterization techniques.The latest achievements in utilizing 2D Mo-based materials as electrode materials for various MIBs(including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs)and zinc-ion batteries(ZIBs))are discussed in detail.Afterwards,the modulation strategies for enhancing the electrochemical performance of 2D Mo-based materials are highlighted,focusing on heteroatom doping,vacancies creation,composite coupling engineering and nanostructure design.Finally,we present the existing challenges and future research directions for 2D Mo-based materials to realize high-performance energy storage systems.展开更多
Manganese(Mn)-based materials are considered as one of the most promising cathodes in zinc-ion batteries(ZIBs) for large-scale energy storage applications because of their multivalence, cost-effectiveness,natural avai...Manganese(Mn)-based materials are considered as one of the most promising cathodes in zinc-ion batteries(ZIBs) for large-scale energy storage applications because of their multivalence, cost-effectiveness,natural availability, low toxicity, satisfactory capacity, and high operating voltage. In this review, the research status and related interface engineering strategies of Mn-based oxide cathode electrode materials for ZIB in recent years are summarized. Specifically, the review will focus on three types of interface engineering strategies, including interface reconstruction via cathode, interface reconstruction electrolyte, and protection via artificial cathode-electrolyte interphase(CEI) layer, within the context of their evolution of interface layer and corresponding electrochemical performance. A series of experimental variables, such as crystal structure, electrochemical reaction mechanism, and the necessary connection for the formation and evolution of interface layer, will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations. Finally, suggestions and strategies are provided for reasonably designing the cathode-electrolyte interface to realize the excellent performance of Mn-based oxide zinc-based batteries.展开更多
基金financial support from the National Natural Science Foundation of China(21676036)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing(CYS-20040)。
文摘As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.
基金supported by the National Natural Science Foundation of China(No.21676036)the Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing(No.CYB22043 and CYS22073)。
文摘With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years,two-dimensional(2D)molybdenum-based(Mo-based)materials have drawn considerable attention due to their exceptional characteristics,including low cost,unique crystal structure,high theoretical capacity and controllable chemical compositions.However,like other transition metal compounds,Mo-based materials are facing thorny challenges to overcome,such as slow electron/ion transfer kinetics and substantial volume changes during the charge and discharge processes.In this review,we summarize the recent progress in developing emerging 2D Mo-based electrode materials for MIBs,encompassing oxides,sulfides,selenides,carbides.After introducing the crystal structure and common synthesis methods,this review sheds light on the charge storage mechanism of several 2D Mo-based materials by various advanced characterization techniques.The latest achievements in utilizing 2D Mo-based materials as electrode materials for various MIBs(including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs)and zinc-ion batteries(ZIBs))are discussed in detail.Afterwards,the modulation strategies for enhancing the electrochemical performance of 2D Mo-based materials are highlighted,focusing on heteroatom doping,vacancies creation,composite coupling engineering and nanostructure design.Finally,we present the existing challenges and future research directions for 2D Mo-based materials to realize high-performance energy storage systems.
基金financial support from the National Natural Science Foundation of China (No. 21676036)the Natural Science Foundation of Chongqing (No. CSTB2023NSCQMSX0580)。
文摘Manganese(Mn)-based materials are considered as one of the most promising cathodes in zinc-ion batteries(ZIBs) for large-scale energy storage applications because of their multivalence, cost-effectiveness,natural availability, low toxicity, satisfactory capacity, and high operating voltage. In this review, the research status and related interface engineering strategies of Mn-based oxide cathode electrode materials for ZIB in recent years are summarized. Specifically, the review will focus on three types of interface engineering strategies, including interface reconstruction via cathode, interface reconstruction electrolyte, and protection via artificial cathode-electrolyte interphase(CEI) layer, within the context of their evolution of interface layer and corresponding electrochemical performance. A series of experimental variables, such as crystal structure, electrochemical reaction mechanism, and the necessary connection for the formation and evolution of interface layer, will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations. Finally, suggestions and strategies are provided for reasonably designing the cathode-electrolyte interface to realize the excellent performance of Mn-based oxide zinc-based batteries.