期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of Different Rates of Nitrogen Supplementation on Soil PhysicochemicalProperties and Microbial Diversity in Goji Berry
1
作者 Xiaojie liang Wei An +4 位作者 yuekun li Yajun Wang Xiaoya Qin Yanhong Cui Shuchai Su 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期467-486,共20页
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz... Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions. 展开更多
关键词 Goji berry production Ningxia China differential nitrogen supplementation rates 16S RNA gene and IT1&IT2 region sequencing soil physicochemical properties
下载PDF
Robust route to H_(2)O_(2)and H_(2)via intermediate water splitting enabled by capitalizing on minimum vanadium-doped piezocatalysts 被引量:1
2
作者 yuekun li li li +7 位作者 Fangyan liu Biao Wang Feng Gao Chuan liu Jingyun Fang Feng Huang Zhang lin Mengye Wang 《Nano Research》 SCIE EI CSCD 2022年第9期7986-7993,共8页
H_(2)O_(2)is an environmentally friendly chemical for a wide range of water treatments.The industrial production of H_(2)O_(2)is an anthraquinone oxidation process,which,however,consumes extensive energy and produces ... H_(2)O_(2)is an environmentally friendly chemical for a wide range of water treatments.The industrial production of H_(2)O_(2)is an anthraquinone oxidation process,which,however,consumes extensive energy and produces pollution.Here we report a green and sustainable piezocatalytic intermediate water splitting process to simultaneously obtain H_(2)O_(2)and H_(2)using single crystal vanadium(V)-doped NaNbO_(3)(V-NaNbO_(3))nanocubes as catalysts.The introduction of V improves the specific surface area and active sites of NaNbO_(3).Notably,V-NaNbO_(3)piezocatalysts of 10 mg exhibit 3.1-fold higher piezocatalytic efficiency than the same catalysts of 50 mg,as more piezocatalysts lead to higher probability of aggregation.The aggregation causes reducing active sites and decreased built-in electric field due to the neutralization between different nano-catalysts.Remarkably,piezocatalytic H_(2)O_(2)and H_(2)production rates of V-NaNbO_(3)(10 mol%)nanocubes(102.6 and 346.2μmol·g^(−1)·h^(−1),respectively)are increased by 2.2 and 4.6 times compared to the as-prepared pristine NaNbO_(3)counterparts,respectively.This improved catalytic efficiency is attributed to the promoted piezo-response and more active sites of NaNbO_(3)catalysts after V doping,as uncovered by piezoresponse force microscopy(PFM)and density functional theory(DFT)simulation.More importantly,our DFT results illustrate that inducing V could reduce the dynamic barrier of water dissociation over NaNbO_(3),thus enhancing the yield of H_(2)O_(2)and H_(2).This facile yet robust piezocatalytic route using minimal amounts of catalysts to obtain H_(2)O_(2)and H_(2)may stand out as a promising candidate for environmental applications and water splitting. 展开更多
关键词 water splitting H_(2)evolution H_(2)O_(2)production piezocatalysis vanadium-doped NaNbO_(3)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部