This paper investigates secure transmission for non-orthogonal multiple access(NOMA)systems where the imperfect successive interference cancellation(SIC)is considered at both legitimate users and eavesdropper(Eve).A p...This paper investigates secure transmission for non-orthogonal multiple access(NOMA)systems where the imperfect successive interference cancellation(SIC)is considered at both legitimate users and eavesdropper(Eve).A power allocation scheme is designed for the legitimate users to mitigate the effect of the SIC error caused by imperfect SIC.For characterizing the secrecy performance of the NOMA system,the closed-form expressions for connection outage probability(COP),secrecy outage probability(SOP),and effective secrecy throughput(EST)are derived over Nakagami-m fading channels in both NOMA and benchmark orthogonal multiple access(OMA)systems.We also provide security and reliability trade-off results(SRT)for the users in the NOMA and OMA systems.Simulation results verify our analysis and show that the strong users achieve better secrecy performance but worse reliability performance and NOMA outperforms OMA in terms of SRT.展开更多
Improving the information freshness is critical for the monitoring and controlling applications in the cellular Internet of Things(IoT).In this paper,we are interested in optimizing the bandwidth allocation dynamicall...Improving the information freshness is critical for the monitoring and controlling applications in the cellular Internet of Things(IoT).In this paper,we are interested in optimizing the bandwidth allocation dynamically to improve the information freshness of the short packet based uplink status updates,which is characterized by a recently proposed metric,age of information(Ao I).We first design a status update scheme with channel distribution information(CDI).By relaxing the hard bandwidth constraint and introducing a Lagrangian multiplier,we first decouple the multi-MTCD bandwidth allocation problem into a single MTCD Markov decision process(MDP).Under the MDP framework,after variable substitution,we obtain the single-MTCD status update scheme by solving a linear programming problem.Then,we adjust the Lagrangian multiplier to make the obtained scheme satisfy the relaxed bandwidth constraint.Finally,a greedy policy is built on the proposed scheme to adjust the bandwidth allocation in each slot to satisfy the hard bandwidth constraint.In the unknown environment without CDI,we further design a bandwidth allocation scheme which only maximizes the expected sum Ao I drop within each time slot.Simulation results show that in terms of AoI,the proposed schemes outperform the benchmark schemes.展开更多
This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice...This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice)aims to transmit the trusted messages to the full-duplex(FD)aided SU receiver(Bob)with the assistance of cooperative relay(Relay).Considering the impact of feedback delay,outdated CSI will aggravate the system performance.To tackle such challenge,the collaborative zero-forcing beamforming(ZFB)scheme of FD technique is further introduced to implement jamming so as to confuse the eavesdropping and improve the security performance of the system.Under such setup,the exact and asymptotic expressions of the secrecy outage probability(SOP)under the outdated CSI case are derived,respectively.The results reveal that i)the outdated CSI of the SU transmission channel will decrease the diversity gain from min(NANR,NRNB)to NRwith NA,NRand NBbeing the number of antennas of Alice,Relay and Bob,respectively,ii)the introduction of FD technique can improve coding gain and enhance system performance.展开更多
This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamm...This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamming-assisted spec-trum monitoring scheme via spectrum monitoring data(SMD)transmission is proposed to maximize the sum ergodic monitoring rate at SM.In SWPC,the suspi-cious communications of each data block occupy mul-tiple independent blocks,with a block dedicated to the wireless energy transfer by the energy-constrained suspicious nodes with locations in a same cluster(symmetric scene)or randomly distributed(asymmet-ric scene)and the remaining blocks used for the in-formation transmission from suspicious transmitters(STs)to suspicious destination(SD).For the sym-metric scene,with a given number of blocks for SMD transmission,namely the jamming operation,we first reveal that SM should transmit SMD signal(jam the SD)with tolerable maximum power in the given blocks.The perceived suspicious signal power at SM could be maximized,and thus so does the correspond-ing sum ergodic monitoring rate.Then,we further reveal one fundamental trade-off in deciding the op-timal number of given blocks for SMD transmission.For the asymmetric scene,a low-complexity greedy block selection scheme is proposed to guarantee the optimal performance.Simulation results show that the jamming-assisted spectrum monitoring schemes via SMD transmission achieve much better perfor-mance than conventional passive spectrum monitor-ing,since the proposed schemes can obtain more accu-rate and effective spectrum characteristic parameters,which provide basic support for fine-grained spectrum management and a solution for spectrum security in dynamic spectrum sharing network.展开更多
Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on securit...Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on security performance is still unclear.Specifically,short-packet communication is expected to meet the delay requirement of URLLC,while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable.In this paper,we investigate the secure short-packet transmission in uplink massive multiuser multiple-inputmultiple-output(MU-MIMO)system under imperfect channel state information(CSI).We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput(AST)as the analysis metric.We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes.Furthermore,a one-dimensional search method is used to optimize the maximum system AST for a given pilot length.Numerical results verify the correctness of theoretical analysis,and show that there are some parameters that affect the tradeoff between security and latency.Moreover,appropriately increasing the number of antennas at the base station(BS)and transmission power at user devices(UDs)can increase the system AST to achieve the required threshold.展开更多
Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or...Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or absolutely selfish. How to stimulate them to devote their links and how to allocate their links to D2 D pair candidates efficiently are two main challenges. In this paper, we encourage cellular users through the variable payment with regard to the social tie strength between cellular users and D2 D pair candidates. In particular, the social tie strength is inferred through a graph inference model and its impact on the payment is quantified as a negative exponential function. Then, we propose a resource scheduling optimization model based on the non-transferable utility coalition formation game, and a distributed coalition formation algorithm based on the Pareto preference and merge-and-split rule. From them, the final coalition structure is obtained, which reflects the strategy of mode selection and link allocation. Numerical results are presented to verify the effectiveness of our proposed scheme.展开更多
Massive machine type communications(mMTC)have been regarded as promising applications in the future.One main feature of mMTC is short packet communication.Different from traditional long packet communication,short pac...Massive machine type communications(mMTC)have been regarded as promising applications in the future.One main feature of mMTC is short packet communication.Different from traditional long packet communication,short packet communication suffers from transmission rate degradation and a significant error rate is introduced.In this case,traditional resource allocation scheme for mMTC is no longer applicable.In this paper,we explore resource allocation for cellular-based mMTC in the finite blocklength regime.First,to mitigate the load of the base station(BS),we establish a framework for cellularbased mMTC,where MTCGs reuse the resources of cellular users(CUs),aggregate the packets generated by MTCDs,and forward them to the BS.Next,we adopt short packet theory to obtain the minimum required blocklength of a packet that transmits a certain amount of information.Then,by modeling the process of MTCGs-assisted communication as a queuing process,we derive the closed-form expression of the average delay of all MTCDs.Guided by this,we propose a joint power allocation and spectrum sharing scheme to minimize the average delay.Finally,the simulation results verify the correctness of the theoretical results and show that the proposed scheme can reduce the average delay efficiently.展开更多
Cognitive Internet of Things(IoT)has at-tracted much attention due to its high spectrum uti-lization.However,potential security of the short-packet communications in cognitive IoT becomes an important issue.This paper...Cognitive Internet of Things(IoT)has at-tracted much attention due to its high spectrum uti-lization.However,potential security of the short-packet communications in cognitive IoT becomes an important issue.This paper proposes a relay-assisted maximum ratio combining/zero forcing beamforming(MRC/ZFB)scheme to guarantee the secrecy perfor-mance of dual-hop short-packet communications in cognitive IoT.This paper analyzes the average secrecy throughput of the system and further investigates two asymptotic scenarios with the high signal-to-noise ra-tio(SNR)regime and the infinite blocklength.In ad-dition,the Fibonacci-based alternating optimization method is adopted to jointly optimize the spectrum sensing blocklength and transmission blocklength to maximize the average secrecy throughput.The nu-merical results verify the impact of the system pa-rameters on the tradeoff between the spectrum sensing blocklength and transmission blocklength under a se-crecy constraint.It is shown that the proposed scheme achieves better secrecy performance than other bench-mark schemes.展开更多
To reduce the feedbacks between access point and all nodes in lossy wireless networks, a clustered system model consisting of a cluster head and multiple common nodes is investigated. Network coding has been proposed ...To reduce the feedbacks between access point and all nodes in lossy wireless networks, a clustered system model consisting of a cluster head and multiple common nodes is investigated. Network coding has been proposed for more efficient retransmissions in reliable multicast. However, in existing schemes the access point retransmits coded packets, which causes severe delay and considerable feedbacks. In this paper, an XOR scheme based on clustered model is presented. For this scheme, the cluster head broadcasts combined packets by XORing lost packets appropriately to recover lost packets locally. We also analyze the performance in terms of expected number of transmissions. Simulation results verify theoretic analysis. And our results show that proposed XOR offers a compromise between ARQ and random linear network coding.展开更多
In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling techniqu...In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling technique.In-chip resources of the designed voltage monitor were fully utilized in hardware design to reduce external devices.The MQX RTOS was used to perform the functional tasks flexibly and efficiently;especially the Ethernet communication applications and USB device connection were realized using its TCP/IP protocol stack and USB driver.In addition,to ensure the safety of electrical records,data statistics and alarm information management were also implemented through the management of the storage in FLASH.The test results show that the voltage monitor designed in this paper has the advantages of accurate measurement,strong resistance to frequency interference and low cost,and can be widely applied in the field of voltage monitoring in distribution networks.展开更多
基金supported by the National Key R&D Program of China(No.2018YFB1801103)the National Natural Science Foundation of China(No.61771487).
文摘This paper investigates secure transmission for non-orthogonal multiple access(NOMA)systems where the imperfect successive interference cancellation(SIC)is considered at both legitimate users and eavesdropper(Eve).A power allocation scheme is designed for the legitimate users to mitigate the effect of the SIC error caused by imperfect SIC.For characterizing the secrecy performance of the NOMA system,the closed-form expressions for connection outage probability(COP),secrecy outage probability(SOP),and effective secrecy throughput(EST)are derived over Nakagami-m fading channels in both NOMA and benchmark orthogonal multiple access(OMA)systems.We also provide security and reliability trade-off results(SRT)for the users in the NOMA and OMA systems.Simulation results verify our analysis and show that the strong users achieve better secrecy performance but worse reliability performance and NOMA outperforms OMA in terms of SRT.
基金supported by the Natural Science Foundations of China under Grant(62171464,62171461)the National Key R&D Program of China(No.11112018YFB1801103)the Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu under Grant BK20212001。
文摘Improving the information freshness is critical for the monitoring and controlling applications in the cellular Internet of Things(IoT).In this paper,we are interested in optimizing the bandwidth allocation dynamically to improve the information freshness of the short packet based uplink status updates,which is characterized by a recently proposed metric,age of information(Ao I).We first design a status update scheme with channel distribution information(CDI).By relaxing the hard bandwidth constraint and introducing a Lagrangian multiplier,we first decouple the multi-MTCD bandwidth allocation problem into a single MTCD Markov decision process(MDP).Under the MDP framework,after variable substitution,we obtain the single-MTCD status update scheme by solving a linear programming problem.Then,we adjust the Lagrangian multiplier to make the obtained scheme satisfy the relaxed bandwidth constraint.Finally,a greedy policy is built on the proposed scheme to adjust the bandwidth allocation in each slot to satisfy the hard bandwidth constraint.In the unknown environment without CDI,we further design a bandwidth allocation scheme which only maximizes the expected sum Ao I drop within each time slot.Simulation results show that in terms of AoI,the proposed schemes outperform the benchmark schemes.
基金supported by the National Natural Science Foundation of China(No.62201606 and No.62071486)the Project of Science and Technology Planning of Guizhou Province(No.[2020]-030)+3 种基金the Project of Science and Technology Fund of Guizhou Provincial Health Commission(gzwkj2022524)the Project of Youth Science and Technology Talent Growth Guizhou Provincial Department of Education(No.KY[2021]230)the Key Research Base Project of Humanities and Social Sciences of Education Department of Guizhou Provincethe Project of Science and Technology Planning of Zunyi City(No.2022-381 and No.2022-384)。
文摘This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice)aims to transmit the trusted messages to the full-duplex(FD)aided SU receiver(Bob)with the assistance of cooperative relay(Relay).Considering the impact of feedback delay,outdated CSI will aggravate the system performance.To tackle such challenge,the collaborative zero-forcing beamforming(ZFB)scheme of FD technique is further introduced to implement jamming so as to confuse the eavesdropping and improve the security performance of the system.Under such setup,the exact and asymptotic expressions of the secrecy outage probability(SOP)under the outdated CSI case are derived,respectively.The results reveal that i)the outdated CSI of the SU transmission channel will decrease the diversity gain from min(NANR,NRNB)to NRwith NA,NRand NBbeing the number of antennas of Alice,Relay and Bob,respectively,ii)the introduction of FD technique can improve coding gain and enhance system performance.
基金the Natural Science Foun-dations of China(No.62171464,61771487)the Defense Science Foundation of China(No.2019-JCJQ-JJ-221).
文摘This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamming-assisted spec-trum monitoring scheme via spectrum monitoring data(SMD)transmission is proposed to maximize the sum ergodic monitoring rate at SM.In SWPC,the suspi-cious communications of each data block occupy mul-tiple independent blocks,with a block dedicated to the wireless energy transfer by the energy-constrained suspicious nodes with locations in a same cluster(symmetric scene)or randomly distributed(asymmet-ric scene)and the remaining blocks used for the in-formation transmission from suspicious transmitters(STs)to suspicious destination(SD).For the sym-metric scene,with a given number of blocks for SMD transmission,namely the jamming operation,we first reveal that SM should transmit SMD signal(jam the SD)with tolerable maximum power in the given blocks.The perceived suspicious signal power at SM could be maximized,and thus so does the correspond-ing sum ergodic monitoring rate.Then,we further reveal one fundamental trade-off in deciding the op-timal number of given blocks for SMD transmission.For the asymmetric scene,a low-complexity greedy block selection scheme is proposed to guarantee the optimal performance.Simulation results show that the jamming-assisted spectrum monitoring schemes via SMD transmission achieve much better perfor-mance than conventional passive spectrum monitor-ing,since the proposed schemes can obtain more accu-rate and effective spectrum characteristic parameters,which provide basic support for fine-grained spectrum management and a solution for spectrum security in dynamic spectrum sharing network.
基金supported by the National Key R&D Program of China under Grant 2018YFB1801103the National Natural Science Foundation of China under Grant(no.62171464,no.62122094)。
文摘Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on security performance is still unclear.Specifically,short-packet communication is expected to meet the delay requirement of URLLC,while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable.In this paper,we investigate the secure short-packet transmission in uplink massive multiuser multiple-inputmultiple-output(MU-MIMO)system under imperfect channel state information(CSI).We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput(AST)as the analysis metric.We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes.Furthermore,a one-dimensional search method is used to optimize the maximum system AST for a given pilot length.Numerical results verify the correctness of theoretical analysis,and show that there are some parameters that affect the tradeoff between security and latency.Moreover,appropriately increasing the number of antennas at the base station(BS)and transmission power at user devices(UDs)can increase the system AST to achieve the required threshold.
基金supported by Natural Science Foundations of China (No. 61671474)Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars (No. BK20170089)
文摘Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or absolutely selfish. How to stimulate them to devote their links and how to allocate their links to D2 D pair candidates efficiently are two main challenges. In this paper, we encourage cellular users through the variable payment with regard to the social tie strength between cellular users and D2 D pair candidates. In particular, the social tie strength is inferred through a graph inference model and its impact on the payment is quantified as a negative exponential function. Then, we propose a resource scheduling optimization model based on the non-transferable utility coalition formation game, and a distributed coalition formation algorithm based on the Pareto preference and merge-and-split rule. From them, the final coalition structure is obtained, which reflects the strategy of mode selection and link allocation. Numerical results are presented to verify the effectiveness of our proposed scheme.
基金supported by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(No.BK20180028)the Natural Science Foundations of China(No.61671474,No.61771487)the Jiangsu Provincial Natural Science Fund for Excellent Young Scholars(No.BK20170089).
文摘Massive machine type communications(mMTC)have been regarded as promising applications in the future.One main feature of mMTC is short packet communication.Different from traditional long packet communication,short packet communication suffers from transmission rate degradation and a significant error rate is introduced.In this case,traditional resource allocation scheme for mMTC is no longer applicable.In this paper,we explore resource allocation for cellular-based mMTC in the finite blocklength regime.First,to mitigate the load of the base station(BS),we establish a framework for cellularbased mMTC,where MTCGs reuse the resources of cellular users(CUs),aggregate the packets generated by MTCDs,and forward them to the BS.Next,we adopt short packet theory to obtain the minimum required blocklength of a packet that transmits a certain amount of information.Then,by modeling the process of MTCGs-assisted communication as a queuing process,we derive the closed-form expression of the average delay of all MTCDs.Guided by this,we propose a joint power allocation and spectrum sharing scheme to minimize the average delay.Finally,the simulation results verify the correctness of the theoretical results and show that the proposed scheme can reduce the average delay efficiently.
基金Natural Science Foun-dation of China(No.62171464,61801496 and 61771487)This paper was presented in part at the 2021 IEEE International Conference on Communica-tions Workshops(ICC Workshops),2021.
文摘Cognitive Internet of Things(IoT)has at-tracted much attention due to its high spectrum uti-lization.However,potential security of the short-packet communications in cognitive IoT becomes an important issue.This paper proposes a relay-assisted maximum ratio combining/zero forcing beamforming(MRC/ZFB)scheme to guarantee the secrecy perfor-mance of dual-hop short-packet communications in cognitive IoT.This paper analyzes the average secrecy throughput of the system and further investigates two asymptotic scenarios with the high signal-to-noise ra-tio(SNR)regime and the infinite blocklength.In ad-dition,the Fibonacci-based alternating optimization method is adopted to jointly optimize the spectrum sensing blocklength and transmission blocklength to maximize the average secrecy throughput.The nu-merical results verify the impact of the system pa-rameters on the tradeoff between the spectrum sensing blocklength and transmission blocklength under a se-crecy constraint.It is shown that the proposed scheme achieves better secrecy performance than other bench-mark schemes.
文摘To reduce the feedbacks between access point and all nodes in lossy wireless networks, a clustered system model consisting of a cluster head and multiple common nodes is investigated. Network coding has been proposed for more efficient retransmissions in reliable multicast. However, in existing schemes the access point retransmits coded packets, which causes severe delay and considerable feedbacks. In this paper, an XOR scheme based on clustered model is presented. For this scheme, the cluster head broadcasts combined packets by XORing lost packets appropriately to recover lost packets locally. We also analyze the performance in terms of expected number of transmissions. Simulation results verify theoretic analysis. And our results show that proposed XOR offers a compromise between ARQ and random linear network coding.
文摘In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling technique.In-chip resources of the designed voltage monitor were fully utilized in hardware design to reduce external devices.The MQX RTOS was used to perform the functional tasks flexibly and efficiently;especially the Ethernet communication applications and USB device connection were realized using its TCP/IP protocol stack and USB driver.In addition,to ensure the safety of electrical records,data statistics and alarm information management were also implemented through the management of the storage in FLASH.The test results show that the voltage monitor designed in this paper has the advantages of accurate measurement,strong resistance to frequency interference and low cost,and can be widely applied in the field of voltage monitoring in distribution networks.