As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time...As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time,roasting temperature and dose of straw-type biomass after suspension magnetization roasting(SMR) and separation were investigated.The optimal conditions were determined to be a roasting time of 7.5 min with a straw-type biomass dose of 20 wt% and a roasting temperature of 800℃ in which an iron grade of 71.07% and recovery of 94.17% were obtained for the iron concentrate.The maximum saturation magnetization under optimal conditions was 35.05 A·m^(2)·g^(-1),and the gaseous regulation of the biomass revealed that cumulative reducing gas volume was 293.93 mL at the optimal roasting time of450 s.The transformation of hematite to magnetite was detected by X-ray diffraction(XRD).During microstructure evolution,the outer layer consisting of fissures and tiny holes continuously deepened toward the core.展开更多
While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and...While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and their in fluences on the leachi ng rate of gold have not been fully understood. This limits the extraction of carbonaceous gold deposits. The current work examines the oxidation process of a fine-grained carbonaceous gold ore during roasting using a range of techniques including X-ray diffraction (XRD), seanning electron microscopy (SEM), Energy Dispersive Spectrometer (EDS) analysis and pore structure analysis together with gold leaching tests. The results show that during the process of oxidative roasting, the carbonaceous matters (organic carbon and graphitic carbon) and pyrite were completely decomposed at 600 ℃ with the carbonaceous components burned and pyrite oxidized into hematite. At 650 ℃, while dolomite was decomposed into calcia, magnesia, calcium sulfate etc., the calcine structure became loose and porous, leading to a high gold leaching rate from the roasted product. Above 750 ℃, the porous calcite structure started to collapse along with the agglomeration, leading to the secondary encapsulation of gold particles, which contributed to the sharp drop in the gold leaching rate of the roasted product. This study suggests optimum phase and structure changes of minerals during roasting to achieve maximum gold extraction from fine-grained carbonaceous gold deposits.展开更多
In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt...In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.展开更多
The iron tailings of Bayan Obo mines are solid waste,which occupies land area and also causes environmental pollution;however,this waste can be recycled.In this study,based on the characteristics of iron minerals and ...The iron tailings of Bayan Obo mines are solid waste,which occupies land area and also causes environmental pollution;however,this waste can be recycled.In this study,based on the characteristics of iron minerals and fluorocarbonate contained in Bayan Obo iron tailings,clean magnetization roasting of iron minerals by bastnaesite from iron tailings during in-situ suspension magnetization roasting in a neutral atmosphere was explored.The results show that for iron tailings with a mass of 12 g,a N_(2) gas flow rate of 600 mL/min,and roasting for 5 min at 800℃,iron concentrate with a 60.44%iron grade at an iron recovery of 76.04%could be obtained.X-ray diffraction analysis showed that the weak magnetic hematite was reduced to strong magnetic magnetite in the neutral atmosphere,without additional reductant.The kinetics of the magnetization roasting of mineral mixtures(bastnaesite and hematite)in a neutral atmosphere showed that the optimal reaction mechanism function was the three-dimensional diffusion model with activation energy of 161.8838 kJ·mol^(-1);this indicates that the reaction was a heterogeneous,diffusion-controlled solid-state reaction.展开更多
In order to make the slag from desulphurization and slag skimming(SDSS)to be comprehensively recycled and utilized,a combined process of beneficiation and building materials preparation was proposed to recover iron fr...In order to make the slag from desulphurization and slag skimming(SDSS)to be comprehensively recycled and utilized,a combined process of beneficiation and building materials preparation was proposed to recover iron from SDSS,meanwhile to apply the remaining slag tailings as cement admixture.From this process,three iron-rich products were recovered in stages by clean gravity-magnetic separation,slag tailings were left.Slag powder was prepared by ultrafine grinding of slag tailings.The stability,setting time and cement mortar strength of the slag tailings cements(STC)which were mixed with Portland cement and slag powder were studied respectively.The results showed that a proper overall performance still could be obtained at the slag powder content of 30%.Chemical composition analysis,X-ray diffraction(XRD)analysis,metallographic microscope and scanning electron microscope(SEM)analysis were employed to assess the characteristics of the SDSS and the products obtained from the whole process.The results indicated that the three iron-rich products could be used as a raw material for steelmaking and ironmaking and the relatively large amount of calcium silicate(C_(2)S)and tricalcium silicate(C_(3)S)in the slag tailings make the addition of slag powder into the Portland cement feasible.展开更多
The purpose of this study is to apply process mineralogy as a practical tool to further understand and analyze the reasons for low leaching rates in the curing-leaching process of vanadium-bearing stone coal and to fi...The purpose of this study is to apply process mineralogy as a practical tool to further understand and analyze the reasons for low leaching rates in the curing-leaching process of vanadium-bearing stone coal and to find a solution or improvement to optimize the leaching index.Using vanadium-bearing stone coal with the V2O5 mass fraction of 0.88%as the research object,the effects of particle size,mineral composition,and sulfuric acid curing on the feed,intermediate,and final products of curing-leaching were analyzed.The main vanadium-bearing minerals in the feed samples included sericite/illite,montmorillonite,kaolinite,limonite,and schreyerite.Through the penetration depth analysis of sulfuric acid,the reason for the high vanadium content in the coarse leaching residue(0.205%V2O5)was found,mainly due to the poor curing effect and incomplete washing after screening.Therefore,thorough washing after sieving and further optimizing the curing process are necessary.The vanadium content of the fine leaching residue(0.078%)was low and the curing-leaching effect was good.However,the vanadium content in the thickened residue(0.296%)exceeded that in the fine leaching residue,which was attributed to the neutralization reaction in the#1 thickener.To solve this problem,the neutralization and thickening processes should be performed in separate equipment.The analysis and detection of key products is helpful for identifying problems and improving the curing-leaching circuit process.展开更多
The application of coal-based reduction in the efficient recovery of iron from refractory iron-bearing resources is comprehensively reviewed.Currently,the development and beneficiation of refractory iron-bearing resou...The application of coal-based reduction in the efficient recovery of iron from refractory iron-bearing resources is comprehensively reviewed.Currently,the development and beneficiation of refractory iron-bearing resources have attracted increasing attention.However,the effect of iron recovery by traditional beneficiation methods is unacceptable.Coal-based reduction followed by magnetic separation is proposed,which adopts coal as the reductant to reduce iron oxides to metallic iron below the melting temperature.The metallic iron particles aggregate and grow,and the particle size continuously increases to be suitable for magnetic separation.The optimization and application of coal-based reduction have been abundantly researched.A detailed literature study on coal-based reduction is performed from the perspectives of thermodynamics,reduction kinetics,growth of metallic iron particles,additives,and application.The coal-based reduction industrial equipment can be developed based on the existing pyrometallurgical equipments,rotary hearth furnace and rotary kiln,which are introduced briefly.However,coal-based reduction currently mainly adopts coal as a reductant and fuel,which may result in high levels of carbon dioxide emissions,energy consumption,and pollution.Technological innovation aiming at decreasing carbon dioxide emissions is a new trend of green and sustainable development of the steel industry.Therefore,the substitution of coal with clean energy(hydrogen,biomass,etc.)for iron oxide reduction shows promise in the future.展开更多
Rare earth elements(REEs)are irreplaceable materials supporting low-carbon technology and equip-ment,and their commercial demand and strategic position are becoming increasingly prominent.With the continuous depletion...Rare earth elements(REEs)are irreplaceable materials supporting low-carbon technology and equip-ment,and their commercial demand and strategic position are becoming increasingly prominent.With the continuous depletion of rare earth(RE)resources,developing high-efficiency beneficiation and eco-friendly metallurgical processes has attracted widespread attention.This paper reviews the major minerals exploited for RE production and their deposits,as well as the beneficiation and metallurgical processes of RE minerals.Bastnaesite,monazite,mixed RE ores,and ion-adsorption clays are the main raw materials in the world to date.RE-bearing ores(except ion-adsorption minerals)are generally beneficiated by flotation,gravity and magnetic separation techniques.The mainstream metallurgical processes for bastnaesite,monazite and mixed RE concentrates are oxidation roasting-HCl leaching,caustic soda decomposition and high-temperature concentrated sulfuric acid roasting,respectively.Ion-adsorption clays are directly processed by in situ leaching-precipitation/solvent extraction.To achieve the sustainable development of RE resources,it is essential to further explore innovative techniques to achievecomprehensive utilization and cleaner production.展开更多
Oxidized lead and zinc resources have been underutilized for a long time.With the rapid depletion of the lead-zinc sulfide ores,there is an urgent need to increase the efficient utilization of lead-zinc oxide ores.Flo...Oxidized lead and zinc resources have been underutilized for a long time.With the rapid depletion of the lead-zinc sulfide ores,there is an urgent need to increase the efficient utilization of lead-zinc oxide ores.Flotation is a versatile method for the pre-enrichment of lead-zinc oxide ores.Due to the strong hydration of lead-zinc oxide minerals and the easy dissolution of metal ions on the surface,the flotation separation of lead-zinc oxide ores remains a major challenge to date.Therefore,sulfidation reconstruction of oxidized lead-zinc minerals prior to flotation is crucial for altering their surface properties.This paper reviews the progress of sulfidation pretreatment technology for typical lead-zinc oxide minerals,including cerussite,smithsonite,and hemimorphite.Currently,the utilization of sulfurizing agents for surface sulfidation pretreatment of lead-zinc oxide minerals,followed by flotation recovery using amine collectors,represents the most widely employed process.Constrained by factors such as low sulfidation rates and the propensity for sulfidation products to desorb,flotation recovery of lead-zinc oxide ores remains low.At present,reinforced mineral surface sulfidation by the addition of ammonium salts is a common method to increase the sulfidation rate of lead-zinc oxide ores.In particular,this paper summarizes the mechanisms of different sulfidation reconstruction technologies and analyses the main factors affecting surface sulfidation,as well as outlines the prospects for future research.展开更多
基金the financial support provided to this work by the National Natural Science Foundation of China (No. 52022019)。
文摘As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time,roasting temperature and dose of straw-type biomass after suspension magnetization roasting(SMR) and separation were investigated.The optimal conditions were determined to be a roasting time of 7.5 min with a straw-type biomass dose of 20 wt% and a roasting temperature of 800℃ in which an iron grade of 71.07% and recovery of 94.17% were obtained for the iron concentrate.The maximum saturation magnetization under optimal conditions was 35.05 A·m^(2)·g^(-1),and the gaseous regulation of the biomass revealed that cumulative reducing gas volume was 293.93 mL at the optimal roasting time of450 s.The transformation of hematite to magnetite was detected by X-ray diffraction(XRD).During microstructure evolution,the outer layer consisting of fissures and tiny holes continuously deepened toward the core.
基金Supported by the National Natural Science Foundation of China(51704059,51474169)
文摘While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and their in fluences on the leachi ng rate of gold have not been fully understood. This limits the extraction of carbonaceous gold deposits. The current work examines the oxidation process of a fine-grained carbonaceous gold ore during roasting using a range of techniques including X-ray diffraction (XRD), seanning electron microscopy (SEM), Energy Dispersive Spectrometer (EDS) analysis and pore structure analysis together with gold leaching tests. The results show that during the process of oxidative roasting, the carbonaceous matters (organic carbon and graphitic carbon) and pyrite were completely decomposed at 600 ℃ with the carbonaceous components burned and pyrite oxidized into hematite. At 650 ℃, while dolomite was decomposed into calcia, magnesia, calcium sulfate etc., the calcine structure became loose and porous, leading to a high gold leaching rate from the roasted product. Above 750 ℃, the porous calcite structure started to collapse along with the agglomeration, leading to the secondary encapsulation of gold particles, which contributed to the sharp drop in the gold leaching rate of the roasted product. This study suggests optimum phase and structure changes of minerals during roasting to achieve maximum gold extraction from fine-grained carbonaceous gold deposits.
基金financially supported by the National Natural Science Foundation of China(Nos.51874071 and 52022019)。
文摘In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.
基金the financial support from the National Natural Science Foundation of China(No.52174242)the Fundamental Research Funds for the Central Universities(No.180115008)the Fund of the Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization(No.GK-201804)。
文摘The iron tailings of Bayan Obo mines are solid waste,which occupies land area and also causes environmental pollution;however,this waste can be recycled.In this study,based on the characteristics of iron minerals and fluorocarbonate contained in Bayan Obo iron tailings,clean magnetization roasting of iron minerals by bastnaesite from iron tailings during in-situ suspension magnetization roasting in a neutral atmosphere was explored.The results show that for iron tailings with a mass of 12 g,a N_(2) gas flow rate of 600 mL/min,and roasting for 5 min at 800℃,iron concentrate with a 60.44%iron grade at an iron recovery of 76.04%could be obtained.X-ray diffraction analysis showed that the weak magnetic hematite was reduced to strong magnetic magnetite in the neutral atmosphere,without additional reductant.The kinetics of the magnetization roasting of mineral mixtures(bastnaesite and hematite)in a neutral atmosphere showed that the optimal reaction mechanism function was the three-dimensional diffusion model with activation energy of 161.8838 kJ·mol^(-1);this indicates that the reaction was a heterogeneous,diffusion-controlled solid-state reaction.
基金The authors gratefully acknowledge the National Key Research and Development Program of China(No.2018YFC1901902)the Liao Ning Revitalization Talents Program(No.XLYC1907162).
文摘In order to make the slag from desulphurization and slag skimming(SDSS)to be comprehensively recycled and utilized,a combined process of beneficiation and building materials preparation was proposed to recover iron from SDSS,meanwhile to apply the remaining slag tailings as cement admixture.From this process,three iron-rich products were recovered in stages by clean gravity-magnetic separation,slag tailings were left.Slag powder was prepared by ultrafine grinding of slag tailings.The stability,setting time and cement mortar strength of the slag tailings cements(STC)which were mixed with Portland cement and slag powder were studied respectively.The results showed that a proper overall performance still could be obtained at the slag powder content of 30%.Chemical composition analysis,X-ray diffraction(XRD)analysis,metallographic microscope and scanning electron microscope(SEM)analysis were employed to assess the characteristics of the SDSS and the products obtained from the whole process.The results indicated that the three iron-rich products could be used as a raw material for steelmaking and ironmaking and the relatively large amount of calcium silicate(C_(2)S)and tricalcium silicate(C_(3)S)in the slag tailings make the addition of slag powder into the Portland cement feasible.
基金supported by the National Key Research and Development Program of China(No.2020YFC1909704)the National Natural Science Foundation of China(Nos.51904222 and 52074068)+1 种基金the Shaanxi Innovation Capacity Support Plan(2020KJXX-053)the Shaanxi Natural Science Basic Research Program(No.2019JQ-468).
文摘The purpose of this study is to apply process mineralogy as a practical tool to further understand and analyze the reasons for low leaching rates in the curing-leaching process of vanadium-bearing stone coal and to find a solution or improvement to optimize the leaching index.Using vanadium-bearing stone coal with the V2O5 mass fraction of 0.88%as the research object,the effects of particle size,mineral composition,and sulfuric acid curing on the feed,intermediate,and final products of curing-leaching were analyzed.The main vanadium-bearing minerals in the feed samples included sericite/illite,montmorillonite,kaolinite,limonite,and schreyerite.Through the penetration depth analysis of sulfuric acid,the reason for the high vanadium content in the coarse leaching residue(0.205%V2O5)was found,mainly due to the poor curing effect and incomplete washing after screening.Therefore,thorough washing after sieving and further optimizing the curing process are necessary.The vanadium content of the fine leaching residue(0.078%)was low and the curing-leaching effect was good.However,the vanadium content in the thickened residue(0.296%)exceeded that in the fine leaching residue,which was attributed to the neutralization reaction in the#1 thickener.To solve this problem,the neutralization and thickening processes should be performed in separate equipment.The analysis and detection of key products is helpful for identifying problems and improving the curing-leaching circuit process.
基金financially supported by the National Natural Science Foundation of China (No. 52022019)the National Key R&D Program of China (No. 2021YFC2901000)the Fok Ying Tung Education Foundation (No. 161045)
文摘The application of coal-based reduction in the efficient recovery of iron from refractory iron-bearing resources is comprehensively reviewed.Currently,the development and beneficiation of refractory iron-bearing resources have attracted increasing attention.However,the effect of iron recovery by traditional beneficiation methods is unacceptable.Coal-based reduction followed by magnetic separation is proposed,which adopts coal as the reductant to reduce iron oxides to metallic iron below the melting temperature.The metallic iron particles aggregate and grow,and the particle size continuously increases to be suitable for magnetic separation.The optimization and application of coal-based reduction have been abundantly researched.A detailed literature study on coal-based reduction is performed from the perspectives of thermodynamics,reduction kinetics,growth of metallic iron particles,additives,and application.The coal-based reduction industrial equipment can be developed based on the existing pyrometallurgical equipments,rotary hearth furnace and rotary kiln,which are introduced briefly.However,coal-based reduction currently mainly adopts coal as a reductant and fuel,which may result in high levels of carbon dioxide emissions,energy consumption,and pollution.Technological innovation aiming at decreasing carbon dioxide emissions is a new trend of green and sustainable development of the steel industry.Therefore,the substitution of coal with clean energy(hydrogen,biomass,etc.)for iron oxide reduction shows promise in the future.
基金Project supported by the National Key R&D Program of China(2022YFC2905800,2021YFC2901000)the National Natural Science Foundation of China(52174242,52130406).
文摘Rare earth elements(REEs)are irreplaceable materials supporting low-carbon technology and equip-ment,and their commercial demand and strategic position are becoming increasingly prominent.With the continuous depletion of rare earth(RE)resources,developing high-efficiency beneficiation and eco-friendly metallurgical processes has attracted widespread attention.This paper reviews the major minerals exploited for RE production and their deposits,as well as the beneficiation and metallurgical processes of RE minerals.Bastnaesite,monazite,mixed RE ores,and ion-adsorption clays are the main raw materials in the world to date.RE-bearing ores(except ion-adsorption minerals)are generally beneficiated by flotation,gravity and magnetic separation techniques.The mainstream metallurgical processes for bastnaesite,monazite and mixed RE concentrates are oxidation roasting-HCl leaching,caustic soda decomposition and high-temperature concentrated sulfuric acid roasting,respectively.Ion-adsorption clays are directly processed by in situ leaching-precipitation/solvent extraction.To achieve the sustainable development of RE resources,it is essential to further explore innovative techniques to achievecomprehensive utilization and cleaner production.
基金financially supported by the National Natural Science Foundation of China (No.52374260)。
文摘Oxidized lead and zinc resources have been underutilized for a long time.With the rapid depletion of the lead-zinc sulfide ores,there is an urgent need to increase the efficient utilization of lead-zinc oxide ores.Flotation is a versatile method for the pre-enrichment of lead-zinc oxide ores.Due to the strong hydration of lead-zinc oxide minerals and the easy dissolution of metal ions on the surface,the flotation separation of lead-zinc oxide ores remains a major challenge to date.Therefore,sulfidation reconstruction of oxidized lead-zinc minerals prior to flotation is crucial for altering their surface properties.This paper reviews the progress of sulfidation pretreatment technology for typical lead-zinc oxide minerals,including cerussite,smithsonite,and hemimorphite.Currently,the utilization of sulfurizing agents for surface sulfidation pretreatment of lead-zinc oxide minerals,followed by flotation recovery using amine collectors,represents the most widely employed process.Constrained by factors such as low sulfidation rates and the propensity for sulfidation products to desorb,flotation recovery of lead-zinc oxide ores remains low.At present,reinforced mineral surface sulfidation by the addition of ammonium salts is a common method to increase the sulfidation rate of lead-zinc oxide ores.In particular,this paper summarizes the mechanisms of different sulfidation reconstruction technologies and analyses the main factors affecting surface sulfidation,as well as outlines the prospects for future research.