We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake Cr Cl;with an external magnetic field H applied in plane.Based on a ...We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake Cr Cl;with an external magnetic field H applied in plane.Based on a Lagrangian equation and a Rayleigh dissipation function,we predicted that the resonance linewidth△H as a function of microwave frequencyωis nonlinear for both acoustic and optical modes in the Cr Cl;flake,which is significantly different from the linear relationship of△H-ωin ferromagnets.Measuring the microwave transmission through the Cr Cl;flake,we obtained theω–H dispersion and damping evolution△H–ωfor both acoustic and optical modes.Combining both our theoretical prediction and experimental observations,we concluded that the nonlinear damping evolution△H–ωis a consequence of the interlayer interaction during the antiferromagnetic resonance,and the interlayer Gilbert dissipation plays an important role in the nonlinear damping evolution because of the asymmetry of the non-collinear magnetizaiton between layers.展开更多
In this study,a systematic refinement method was developed for non-uniform Catmull-Clark subdivision surfaces to improve the quality of the surface at extraordinary points(EPs).The developed method modifies the eigenp...In this study,a systematic refinement method was developed for non-uniform Catmull-Clark subdivision surfaces to improve the quality of the surface at extraordinary points(EPs).The developed method modifies the eigenpolyhedron by designing the angles between two adjacent edges that contain an EP.Refinement rules are then formulated with the help of the modified eigenpolyhedron.Numerical experiments show that the method significantly improves the performance of the subdivision surface for non-uniform parameterization.展开更多
This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism...This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism of these systems.To fully exploit the unified uncertain transition probabilities,an equivalent transformation technique is introduced as an alternative to traditional estimation methods,effectively utilizing the information of transition probabilities.Furthermore,a vector Wirtinger-based summation inequality is proposed,which captures more system information compared to existing ones.Building upon these components,a novel condition that guarantees a reachable set estimation is presented for Markovian jump neural networks with unified uncertain transition probabilities.A numerical example is illustrated to demonstrate the superiority of the approaches.展开更多
Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and...Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.展开更多
As a corner-cutting subdivision scheme,Lane-Riesefeld algorithm possesses the concise and unified form for generating uniform B-spline curves:vertex splitting plus repeated midpoint averaging.In this paper,we modify t...As a corner-cutting subdivision scheme,Lane-Riesefeld algorithm possesses the concise and unified form for generating uniform B-spline curves:vertex splitting plus repeated midpoint averaging.In this paper,we modify the second midpoint averaging step of the Lane-Riesefeld algorithm by introducing a parameter which controls the size of corner cutting,and generalize the strategy to arbitrary topological surfaces of general degree.By adjusting the free parameter,the proposed method can generate subdivision surfaces with flexible shapes.Experimental results demonstrate that our algorithm can produce subdivision surfaces with comparable or even better quality than the other state-of-the-art approaches by carefully choosing the free parameters.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11774200)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2019JQ02)the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University。
文摘We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake Cr Cl;with an external magnetic field H applied in plane.Based on a Lagrangian equation and a Rayleigh dissipation function,we predicted that the resonance linewidth△H as a function of microwave frequencyωis nonlinear for both acoustic and optical modes in the Cr Cl;flake,which is significantly different from the linear relationship of△H-ωin ferromagnets.Measuring the microwave transmission through the Cr Cl;flake,we obtained theω–H dispersion and damping evolution△H–ωfor both acoustic and optical modes.Combining both our theoretical prediction and experimental observations,we concluded that the nonlinear damping evolution△H–ωis a consequence of the interlayer interaction during the antiferromagnetic resonance,and the interlayer Gilbert dissipation plays an important role in the nonlinear damping evolution because of the asymmetry of the non-collinear magnetizaiton between layers.
基金This work was supported by the National Key R&D Program of China,No.2020YFB1708900Natural Science Foundation of China,Nos.61872328 and 11801126.
文摘In this study,a systematic refinement method was developed for non-uniform Catmull-Clark subdivision surfaces to improve the quality of the surface at extraordinary points(EPs).The developed method modifies the eigenpolyhedron by designing the angles between two adjacent edges that contain an EP.Refinement rules are then formulated with the help of the modified eigenpolyhedron.Numerical experiments show that the method significantly improves the performance of the subdivision surface for non-uniform parameterization.
基金funded by National Key Research and Development Program of China under Grant 2022YFE0107300the Chongqing Technology Innovation and Application Development Special Key Project under Grant CSTB2022TIAD-KPX0162+3 种基金the National Natural Science Foundation of China under Grant U22A20101the Chongqing Technology Innovation and Application Development Special Key Project under Grant CSTB2022TIAD-CUX0015the Chongqing postdoctoral innovativetalents support program under Grant CQBX202205the China Postdoctoral Science Foundation under Grant 2023M730411.
文摘This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism of these systems.To fully exploit the unified uncertain transition probabilities,an equivalent transformation technique is introduced as an alternative to traditional estimation methods,effectively utilizing the information of transition probabilities.Furthermore,a vector Wirtinger-based summation inequality is proposed,which captures more system information compared to existing ones.Building upon these components,a novel condition that guarantees a reachable set estimation is presented for Markovian jump neural networks with unified uncertain transition probabilities.A numerical example is illustrated to demonstrate the superiority of the approaches.
基金supported by the National Natural Science Foundation of China (11434006, 11774199, and 51871112)the National Basic Research Program of China (2015CB921502)+1 种基金the 111 Project B13029supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DEAC02-76SF00515。
文摘Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.
文摘As a corner-cutting subdivision scheme,Lane-Riesefeld algorithm possesses the concise and unified form for generating uniform B-spline curves:vertex splitting plus repeated midpoint averaging.In this paper,we modify the second midpoint averaging step of the Lane-Riesefeld algorithm by introducing a parameter which controls the size of corner cutting,and generalize the strategy to arbitrary topological surfaces of general degree.By adjusting the free parameter,the proposed method can generate subdivision surfaces with flexible shapes.Experimental results demonstrate that our algorithm can produce subdivision surfaces with comparable or even better quality than the other state-of-the-art approaches by carefully choosing the free parameters.