In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal ...In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution.展开更多
In order to improve the fire resistance,water resistance and wear resistance of ordinary plywood products in the wood processing industry,three composite structures of plywood products S1,S2 and S3 were designed in th...In order to improve the fire resistance,water resistance and wear resistance of ordinary plywood products in the wood processing industry,three composite structures of plywood products S1,S2 and S3 were designed in this paper,and a reasonable production process was proposed.Through the physical and mechanical properties and fire resistance testing and technical and economic analysis,the applicability of composite plywood was evaluated.The results of the study showed that the physical mechanics of the three kinds of composite structure plywood met the standard requirements,and their fire resistance was far better than that of ordinary plywood.Among them,the S1 structural board had the best overall physical and mechanical properties.The S3 structural board showed the best fire resistance,which was about 1.9 times more than that of ordinary plywood,and the added cost was the lowest.The thin cork board added to the S2 structural board had poor fire performance since the air in the cork board cavities had a certain combustion-supporting effect,which inhibited the fire resistance of high-pressure laminate(HPL)layer.Moreover,the additional cost of the S2 board was the highest,and its comprehensive performance was the worst.The S3 structural plywood product composed of HPL fireproof board with a thickness of about 1 mm in the surface layer and ordinary plywood with a thickness of about 12 mm in the core layer was the most cost-effective product,which could meet the needs of various fields such as construction,home furnishing,decoration and transportation.展开更多
In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequ...In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents.展开更多
In this Letter,we employ fused silica and two types of optical glass as examples to investigate the coherent terahertz(THz)wave emission from laser-ionized isotropic transparent dielectrics.Based on the laser energy a...In this Letter,we employ fused silica and two types of optical glass as examples to investigate the coherent terahertz(THz)wave emission from laser-ionized isotropic transparent dielectrics.Based on the laser energy and incident angle dependences,we ascribe the THz emission to the ponderomotive force-induced dipole oscillation.Additionally,our investigation on the dependence of THz amplitude on the laser pulse duration confirms the dominant role of avalanche ionization in solid dielectrics.The THz emission can be utilized to indirectly monitor the ultrafast dynamics of carrier generation and motion during the laser ionization process of solid dielectrics.展开更多
In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic forc...In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic force microscope was used to test the three-dimensional sur face morphology of three kinds of sawn timber and calculate its surface roughness.This study also analyzed the reasonable plan for the value of wood surface roughness and the advantages of the three dimensional shape tester,as well as the influence of tree species,three sections,air dry density and other factors on the surface roughness of the specimen after mechanical processing.The results have shown that it is a more appropriate method to select the calculated values of S。and Sq as the evaluation of the surface roughness of wood with random surface characteristics.The three dimensional wood surface topo-graphy tester can efficiently,conveniently and accurately display the three dimensional topography of wood at a micron-level resolution,and is characterized by high eficiency and good durability.The three dimensional surface morphology characteristics of the three sawn woods correspond to their roughness.The surface roughness of woods is arranged as follows:Sitka spruce>Larch>Beech.For the same tree species,the roughness of the corresponding section after sawing is as follows:chordwise section>crosswise section>radial section.The radial section has lower roughness than the other surfaces.The surface roughness of the wood after sawing is mainly related to its air-dry density.The above is intended to provide a useful reference for the application of measuring and evaluating the surface roughness of sawn timber using the three dimensional surface topography test method.展开更多
Ultra-broadband,intense,coherent terahertz(THz)radiation can be generated,detected,and manipulated using laser-induced gas or liquid plasma as both the THz wave transmitter and detector,with a frequency coverage spann...Ultra-broadband,intense,coherent terahertz(THz)radiation can be generated,detected,and manipulated using laser-induced gas or liquid plasma as both the THz wave transmitter and detector,with a frequency coverage spanning across and beyond the whole THz gap."Such a research topic is termed plasma-based THz wave photonics in gas and liquid phases."In this paper,we review the most important experimental and theoretical works of the topic in the non-relativistic region with pump laser intensity below 1018 W/cm^(2).展开更多
Colliding of two counter-propagating laser pulses is a widely used approach to create a laser field or intensity surge.We experimentally demonstrate broadband coherent terahertz(THz)radiation generation through the in...Colliding of two counter-propagating laser pulses is a widely used approach to create a laser field or intensity surge.We experimentally demonstrate broadband coherent terahertz(THz)radiation generation through the interaction of colliding laser pulses with gas plasma.The THz radiation has a dipole-like emission pattern perpendicular to the laser propagation direction with a detected peak electric field 1 order of magnitude higher than that by single pulse excitation.As a proof-of-concept demonstration,it provides a deep insight into the physical picture of laser–plasma interaction,exploits an important option to the promising plasma-based THz source,and may find more applications in THz nonlinear near-field imaging and spectroscopy.展开更多
Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings signific...Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.展开更多
An atom economicβ-C(sp^(3))−H chlorination of amide derivatives has been developed.This mild protocol employs CuCl_(2) instead of palladium catalysts with atom-economic HCl as chlorine sources and enables the late-st...An atom economicβ-C(sp^(3))−H chlorination of amide derivatives has been developed.This mild protocol employs CuCl_(2) instead of palladium catalysts with atom-economic HCl as chlorine sources and enables the late-stage functionalization of medicine derivatives.Mechanism studies suggest a plausible visible light triggered ligand-to-metal charge transfer(LMCT)/1,4-hydrogen atom transfer(HAT)cascade.展开更多
A Ru(Ⅱ)-catalyzed para-difluoroalkylation of aro matic alde hydes and ketones with a tra nsient directing group has been developed.It utilizes less expensive ruthenium catalysts and allows facile access to challengin...A Ru(Ⅱ)-catalyzed para-difluoroalkylation of aro matic alde hydes and ketones with a tra nsient directing group has been developed.It utilizes less expensive ruthenium catalysts and allows facile access to challenging difluoroalkylated aldehydes.The mechanism studies suggest that the distinct coordination mode of ruthenium complex with imine moieties is responsible for para-selectivity.展开更多
Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are signific...Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are significant,which may bring stability problems.In this paper,the sliding mesh technology is applied and the Unsteady Reynolds Averaged Navier-Stokes(URANS)method is adopted to evaluate the influence of ground on the aerodynamic performance of ducted fans.The time-averaged results show that the ground leads to the decrease of duct thrust,the increase of rotor thrust and the decrease of total thrust.The transient results show that there exist small-scale stall cells with circumferential movements in ground effect.The stall cells start to appear at the blade root when the height is 0.8 rotor radius distance,and arise at both the blade root and tip when the height drops to 0.2.It is found that the unsteady cells rotate between blade passages with an approximate relative speed of 30%-80%of the fan speed,and lead to thrust fluctuations up to 37%of the total thrust.The results are essential to the flight control design of the ducted fan flying vehicle,to ensure its stability in ground effect.展开更多
基金This research was sponsored by the Science and Technology Project for Policy Guidance of Jiangsu Province(SZ-LYG 2020016).
文摘In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution.
基金This work was supported by the 2020 Jiangsu Provincial Department of Science and Technology Policy Guidance Category(North Jiangsu Science and Technology Special SZ-L YG202014).
文摘In order to improve the fire resistance,water resistance and wear resistance of ordinary plywood products in the wood processing industry,three composite structures of plywood products S1,S2 and S3 were designed in this paper,and a reasonable production process was proposed.Through the physical and mechanical properties and fire resistance testing and technical and economic analysis,the applicability of composite plywood was evaluated.The results of the study showed that the physical mechanics of the three kinds of composite structure plywood met the standard requirements,and their fire resistance was far better than that of ordinary plywood.Among them,the S1 structural board had the best overall physical and mechanical properties.The S3 structural board showed the best fire resistance,which was about 1.9 times more than that of ordinary plywood,and the added cost was the lowest.The thin cork board added to the S2 structural board had poor fire performance since the air in the cork board cavities had a certain combustion-supporting effect,which inhibited the fire resistance of high-pressure laminate(HPL)layer.Moreover,the additional cost of the S2 board was the highest,and its comprehensive performance was the worst.The S3 structural plywood product composed of HPL fireproof board with a thickness of about 1 mm in the surface layer and ordinary plywood with a thickness of about 12 mm in the core layer was the most cost-effective product,which could meet the needs of various fields such as construction,home furnishing,decoration and transportation.
文摘In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.62075157,62375199,and 62235013)the Tianjin Municipal Fund for Distinguished Young Scholars(No.20JCJQJC00190)the Key Fund of Shenzhen Natural Science Foundation(No.JCYJ20200109150212515)。
文摘In this Letter,we employ fused silica and two types of optical glass as examples to investigate the coherent terahertz(THz)wave emission from laser-ionized isotropic transparent dielectrics.Based on the laser energy and incident angle dependences,we ascribe the THz emission to the ponderomotive force-induced dipole oscillation.Additionally,our investigation on the dependence of THz amplitude on the laser pulse duration confirms the dominant role of avalanche ionization in solid dielectrics.The THz emission can be utilized to indirectly monitor the ultrafast dynamics of carrier generation and motion during the laser ionization process of solid dielectrics.
文摘In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic force microscope was used to test the three-dimensional sur face morphology of three kinds of sawn timber and calculate its surface roughness.This study also analyzed the reasonable plan for the value of wood surface roughness and the advantages of the three dimensional shape tester,as well as the influence of tree species,three sections,air dry density and other factors on the surface roughness of the specimen after mechanical processing.The results have shown that it is a more appropriate method to select the calculated values of S。and Sq as the evaluation of the surface roughness of wood with random surface characteristics.The three dimensional wood surface topo-graphy tester can efficiently,conveniently and accurately display the three dimensional topography of wood at a micron-level resolution,and is characterized by high eficiency and good durability.The three dimensional surface morphology characteristics of the three sawn woods correspond to their roughness.The surface roughness of woods is arranged as follows:Sitka spruce>Larch>Beech.For the same tree species,the roughness of the corresponding section after sawing is as follows:chordwise section>crosswise section>radial section.The radial section has lower roughness than the other surfaces.The surface roughness of the wood after sawing is mainly related to its air-dry density.The above is intended to provide a useful reference for the application of measuring and evaluating the surface roughness of sawn timber using the three dimensional surface topography test method.
基金supported by the National Natural Science Foundation of China(Nos.62075157,61875151,and 62235013)Tianjin Municipal Fund for Distinguished Young Scholars(No.20JCJQJC00190)+3 种基金Key Fund of Shenzhen Natural Science Foundation(No.JCYJ20200109150212515)National Key Research and Development Program of China(No.2017YFA0701000)Prof.Xi-Cheng Zhang in The Institute of Optics at University of Rochester has support from the Air Force Office of Scientific Research(Nos.FA9550-21-1-0389 and FA9550-21-1-0300)the National Science Foundation(No.ECCS-2152081).
文摘Ultra-broadband,intense,coherent terahertz(THz)radiation can be generated,detected,and manipulated using laser-induced gas or liquid plasma as both the THz wave transmitter and detector,with a frequency coverage spanning across and beyond the whole THz gap."Such a research topic is termed plasma-based THz wave photonics in gas and liquid phases."In this paper,we review the most important experimental and theoretical works of the topic in the non-relativistic region with pump laser intensity below 1018 W/cm^(2).
基金National Natural Science Foundation of China(61875151,62075157)National Key Research and Development Program of China(2017YFA0701000)。
文摘Colliding of two counter-propagating laser pulses is a widely used approach to create a laser field or intensity surge.We experimentally demonstrate broadband coherent terahertz(THz)radiation generation through the interaction of colliding laser pulses with gas plasma.The THz radiation has a dipole-like emission pattern perpendicular to the laser propagation direction with a detected peak electric field 1 order of magnitude higher than that by single pulse excitation.As a proof-of-concept demonstration,it provides a deep insight into the physical picture of laser–plasma interaction,exploits an important option to the promising plasma-based THz source,and may find more applications in THz nonlinear near-field imaging and spectroscopy.
基金This study was co-supported by the National Key Research and Development Program of China(No.2020YFC1512500),The Advanced Aviation Power Innovation institution,The Aero Engine Academy of China,and Tsinghua University Initiative Scientific Research Program,China.
文摘Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.
基金support from the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2017124).
文摘An atom economicβ-C(sp^(3))−H chlorination of amide derivatives has been developed.This mild protocol employs CuCl_(2) instead of palladium catalysts with atom-economic HCl as chlorine sources and enables the late-stage functionalization of medicine derivatives.Mechanism studies suggest a plausible visible light triggered ligand-to-metal charge transfer(LMCT)/1,4-hydrogen atom transfer(HAT)cascade.
基金support from the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2017124)。
文摘A Ru(Ⅱ)-catalyzed para-difluoroalkylation of aro matic alde hydes and ketones with a tra nsient directing group has been developed.It utilizes less expensive ruthenium catalysts and allows facile access to challenging difluoroalkylated aldehydes.The mechanism studies suggest that the distinct coordination mode of ruthenium complex with imine moieties is responsible for para-selectivity.
基金co-supported by the National Key Research and Development Program of China(No.2020YFC1512500)The Advanced Aviation Power Innovation institution,The Aero Engine Academy of ChinaTsinghua University Initiative Scientific Research Program.
文摘Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are significant,which may bring stability problems.In this paper,the sliding mesh technology is applied and the Unsteady Reynolds Averaged Navier-Stokes(URANS)method is adopted to evaluate the influence of ground on the aerodynamic performance of ducted fans.The time-averaged results show that the ground leads to the decrease of duct thrust,the increase of rotor thrust and the decrease of total thrust.The transient results show that there exist small-scale stall cells with circumferential movements in ground effect.The stall cells start to appear at the blade root when the height is 0.8 rotor radius distance,and arise at both the blade root and tip when the height drops to 0.2.It is found that the unsteady cells rotate between blade passages with an approximate relative speed of 30%-80%of the fan speed,and lead to thrust fluctuations up to 37%of the total thrust.The results are essential to the flight control design of the ducted fan flying vehicle,to ensure its stability in ground effect.