Cement as a building material, has high fluidity, compressive strength, and durability, but carbon dioxide emissions during cement production are a major problem. As one of the countermeasures, alkali-activated cement...Cement as a building material, has high fluidity, compressive strength, and durability, but carbon dioxide emissions during cement production are a major problem. As one of the countermeasures, alkali-activated cement using blast furnace slag powder with alkaline stimulants is considered to be a very promising solution for reducing carbon dioxide emissions, but there is a lack of information about the fundamental properties of alkali-activated materials. This study presents an experimental investigation of the fundamental properties of an alkali-activated slag system with sodium carbonate (NC) and calcium hydroxide (CH). The effects of calcium sulfo-aluminate (CSA) and shrinkage reducing agent (SRA) on the properties of blast furnace slag (BFS) based alkali-activated mixture were also investigated. In the experiments, fundamental characteristics including compressive strength, drying shrinkage, and water penetration tests of mortar were evaluated. Porosity, pH, and ignition loss were measured to verify the effectiveness of the materials. The experimental investigation revealed that the compressive strength was increased with the increasing replacement rates of NC in the BFS mortar, and in the case of water to BFS ratio of 0.45 with sodium carbonation addition contents 10 wt.%, the compressive strength for 28 days of curing reaches more than 50 MPa. Low water to BFS ratio and higher addition ratio of NC had a positive effect on the compressive strength development of mortar. Incorporating NC into BFS would affect the decrease in porosity and increase in ignition loss, leading to higher compressive strength. There was a negligible change to the compressive strength, porosity, pH, and ignition loss of BFS samples made with CH, thus, the addition rates of CH to BFS have no or little significant effect on the fundamental properties of alkali-activated cement. From the results of drying shrinkage and water penetration tests, the addition of NC and CH only to BFS exhibited poor drying shrinkage and water penetration characteristics. However, these problems may be overcome due to the use of CSA or SRA in the alkali-activated system made with NC or CH.展开更多
While micronuclei (MN) store extranuclear DNA and cause genome instability, the effects of nuclear envelope (NE) assembly defects associated with MN on genome instability remain largely unknown. Here, we investigated ...While micronuclei (MN) store extranuclear DNA and cause genome instability, the effects of nuclear envelope (NE) assembly defects associated with MN on genome instability remain largely unknown. Here, we investigated the NE protein distribution in MN using HeLa human cervical cancer cells. Under the standard condition and two pharmacological culture conditions, we found that three types of NE protein assemblies were associated with MN: 1) intact NE assembly, in which both core and non-core NE proteins were evenly present;2) type I assembly, in which only core NE proteins were detectable;and 3) type II assembly in which a region deficient for both core and non-core NE proteins existed and a pattern recognition receptor, cyclic guanosine monophos-phate-adenosine monophosphate synthase, was frequently detected. Our findings provide experimental settings and a method of grouping MN-associated NE defects, which may be helpful for researchers who are interested in regulation of genome and nuclear organization relevant to cancer development.展开更多
文摘Cement as a building material, has high fluidity, compressive strength, and durability, but carbon dioxide emissions during cement production are a major problem. As one of the countermeasures, alkali-activated cement using blast furnace slag powder with alkaline stimulants is considered to be a very promising solution for reducing carbon dioxide emissions, but there is a lack of information about the fundamental properties of alkali-activated materials. This study presents an experimental investigation of the fundamental properties of an alkali-activated slag system with sodium carbonate (NC) and calcium hydroxide (CH). The effects of calcium sulfo-aluminate (CSA) and shrinkage reducing agent (SRA) on the properties of blast furnace slag (BFS) based alkali-activated mixture were also investigated. In the experiments, fundamental characteristics including compressive strength, drying shrinkage, and water penetration tests of mortar were evaluated. Porosity, pH, and ignition loss were measured to verify the effectiveness of the materials. The experimental investigation revealed that the compressive strength was increased with the increasing replacement rates of NC in the BFS mortar, and in the case of water to BFS ratio of 0.45 with sodium carbonation addition contents 10 wt.%, the compressive strength for 28 days of curing reaches more than 50 MPa. Low water to BFS ratio and higher addition ratio of NC had a positive effect on the compressive strength development of mortar. Incorporating NC into BFS would affect the decrease in porosity and increase in ignition loss, leading to higher compressive strength. There was a negligible change to the compressive strength, porosity, pH, and ignition loss of BFS samples made with CH, thus, the addition rates of CH to BFS have no or little significant effect on the fundamental properties of alkali-activated cement. From the results of drying shrinkage and water penetration tests, the addition of NC and CH only to BFS exhibited poor drying shrinkage and water penetration characteristics. However, these problems may be overcome due to the use of CSA or SRA in the alkali-activated system made with NC or CH.
文摘While micronuclei (MN) store extranuclear DNA and cause genome instability, the effects of nuclear envelope (NE) assembly defects associated with MN on genome instability remain largely unknown. Here, we investigated the NE protein distribution in MN using HeLa human cervical cancer cells. Under the standard condition and two pharmacological culture conditions, we found that three types of NE protein assemblies were associated with MN: 1) intact NE assembly, in which both core and non-core NE proteins were evenly present;2) type I assembly, in which only core NE proteins were detectable;and 3) type II assembly in which a region deficient for both core and non-core NE proteins existed and a pattern recognition receptor, cyclic guanosine monophos-phate-adenosine monophosphate synthase, was frequently detected. Our findings provide experimental settings and a method of grouping MN-associated NE defects, which may be helpful for researchers who are interested in regulation of genome and nuclear organization relevant to cancer development.