Objective: To explore the effect of evidence-based quality control circle (QCC) in improving the implementation rate of airway management measures in adult critically ill patients. Methods: Based on the Joanna Briggs ...Objective: To explore the effect of evidence-based quality control circle (QCC) in improving the implementation rate of airway management measures in adult critically ill patients. Methods: Based on the Joanna Briggs Institute (JBI) evidence-based health care model, the best evidence of airway management in adult critically ill patients was obtained and applied to the clinic. Results: The total implementation rate of airway management measures in adult critically ill patients increased from 23.62% before the implementation of quality control circle to 88.82%, and the pulmonary infection rate in critically ill patients decreased from 42.31% to 21.74%, with statistical significance between the two groups (P 0.05). Conclusion: Evidence-based quality control circle activities can standardize the practice standards of airway management in critically ill patients, reduce the occurrence of patients’ airway related complications, and improve clinical outcomes.展开更多
At present, the COVID-19 has spread all over the world. In the face of sudden outbreak, it has brought great challenges to the management of nosocomial infection prevention and control. In this battle, how to do well ...At present, the COVID-19 has spread all over the world. In the face of sudden outbreak, it has brought great challenges to the management of nosocomial infection prevention and control. In this battle, how to do well the prevention and control of hospital epidemic situation scientifically and reasonably is the key to hospital management and an important link to ensure the safety of first-line medical staff. Through the clinical practice of our hospital to combat the COVID-19 epidemic situation, we summarize the key points and functions of quality management, and provide management strategies for domestic and foreign countries.展开更多
Understanding the catalytic mechanism of non-noble transition metal electrocatalysts is crucial to designing high-efficiency,low-cost,and durable alternative electrocatalysts for water splitting which comprises the hy...Understanding the catalytic mechanism of non-noble transition metal electrocatalysts is crucial to designing high-efficiency,low-cost,and durable alternative electrocatalysts for water splitting which comprises the hydrogen evolution reaction(HER) and oxygen evolution reaction(OER).In this work,Se-NiSe_(2) hybrid nanosheets with a self-regulated ratio of ionic Se(I-Se) to elemental Se(E-Se) are designed on carbon cloth by solution synthesis and hydrothermal processing.The effects of the I-Se/E-Se ratios on the electrocatalytic characteristics in HER and OER are investigated systematically both experimentally and theoretically.The optimized bifunctional electrocatalyst needs overpotentials of only 133 mV to deliver an HER current density of 10 mA cm^(-2) and 350 mV to generate an OER current density of 100 mA cm^(-2) in1.0 mol L^(-1) KOH.Based on the density-functional theory calculation,surface-adsorbed E-Se is beneficial to optimizing the electron environment and the adsorption/desorption free energy of hydrogen/water of the hybrid catalyst,consequently facilitating the electrocatalytic water splitting process.There is a proper I-Se/E-Se ratio to improve the catalytic activity and kinetics of the reaction and the optimized E-Se adsorption amount can balance the interactions between I-Se and E-Se,so that the catalyst can achieve appropriate Se-H binding and active site exposure for the excellent electrocatalytic activity.To demonstrate the practicality,the assembled symmetrical device can be powered by an AA battery to produce hydrogen and oxygen synchronously.Our results provide a deeper understanding of the catalytic mechanism of transition metal selenides in water splitting and insights into the design of high-efficiency and low-cost electrocatalysts in energy-related applications.展开更多
文摘Objective: To explore the effect of evidence-based quality control circle (QCC) in improving the implementation rate of airway management measures in adult critically ill patients. Methods: Based on the Joanna Briggs Institute (JBI) evidence-based health care model, the best evidence of airway management in adult critically ill patients was obtained and applied to the clinic. Results: The total implementation rate of airway management measures in adult critically ill patients increased from 23.62% before the implementation of quality control circle to 88.82%, and the pulmonary infection rate in critically ill patients decreased from 42.31% to 21.74%, with statistical significance between the two groups (P 0.05). Conclusion: Evidence-based quality control circle activities can standardize the practice standards of airway management in critically ill patients, reduce the occurrence of patients’ airway related complications, and improve clinical outcomes.
文摘At present, the COVID-19 has spread all over the world. In the face of sudden outbreak, it has brought great challenges to the management of nosocomial infection prevention and control. In this battle, how to do well the prevention and control of hospital epidemic situation scientifically and reasonably is the key to hospital management and an important link to ensure the safety of first-line medical staff. Through the clinical practice of our hospital to combat the COVID-19 epidemic situation, we summarize the key points and functions of quality management, and provide management strategies for domestic and foreign countries.
基金supported by the National Natural Science Foundation of China (Nos. 52002294, 51974208, U2003130 and21806099)Key Research and Development Program of Hubei Province (No. 2021BAA208)+1 种基金the Graduate Innovative Fund of Wuhan Institute of Technology (No. CX2020142)the City University of Hong Kong Strategic Research Grant (SRG)(No. 7005505)。
文摘Understanding the catalytic mechanism of non-noble transition metal electrocatalysts is crucial to designing high-efficiency,low-cost,and durable alternative electrocatalysts for water splitting which comprises the hydrogen evolution reaction(HER) and oxygen evolution reaction(OER).In this work,Se-NiSe_(2) hybrid nanosheets with a self-regulated ratio of ionic Se(I-Se) to elemental Se(E-Se) are designed on carbon cloth by solution synthesis and hydrothermal processing.The effects of the I-Se/E-Se ratios on the electrocatalytic characteristics in HER and OER are investigated systematically both experimentally and theoretically.The optimized bifunctional electrocatalyst needs overpotentials of only 133 mV to deliver an HER current density of 10 mA cm^(-2) and 350 mV to generate an OER current density of 100 mA cm^(-2) in1.0 mol L^(-1) KOH.Based on the density-functional theory calculation,surface-adsorbed E-Se is beneficial to optimizing the electron environment and the adsorption/desorption free energy of hydrogen/water of the hybrid catalyst,consequently facilitating the electrocatalytic water splitting process.There is a proper I-Se/E-Se ratio to improve the catalytic activity and kinetics of the reaction and the optimized E-Se adsorption amount can balance the interactions between I-Se and E-Se,so that the catalyst can achieve appropriate Se-H binding and active site exposure for the excellent electrocatalytic activity.To demonstrate the practicality,the assembled symmetrical device can be powered by an AA battery to produce hydrogen and oxygen synchronously.Our results provide a deeper understanding of the catalytic mechanism of transition metal selenides in water splitting and insights into the design of high-efficiency and low-cost electrocatalysts in energy-related applications.