With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW)...With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.展开更多
Ferroelectric materials are increasingly garnering substantial interest due to their potential applications in optical communication,optical computing,and sensing,among others.This surge in attention is largely due to...Ferroelectric materials are increasingly garnering substantial interest due to their potential applications in optical communication,optical computing,and sensing,among others.This surge in attention is largely due to recent advancements in the fabrication of high-quality thin films,the precision of domain engineering,and their strong compatibility with complementary metal–oxide–semiconductor(CMOS)processes.展开更多
Room-temperature phosphorescence(RTP)materials have experienced rapid development due to their potential in organic light-emitting diode,information security,bioimaging,etc.However,the design of chiral organic phospho...Room-temperature phosphorescence(RTP)materials have experienced rapid development due to their potential in organic light-emitting diode,information security,bioimaging,etc.However,the design of chiral organic phosphors with circularly polarized RTP(CPP)property remains a formidable challenge.Here,we introduce a chiral perturbation approach using a combination of chiral binaphthol and phenoselenazine derivative to achieve CPP.The photoactivated CPP in polystyrene(PS)film demonstrates a luminescence dissymmetry factor(glum),emission efficiency,and RTP lifetime up to 9.32×10^(–3),27.0%,and 40.0 ms,respectively.The remarkable sensitivity of PS film to oxygen and temperature enables the adjustable emission colors,ranging from green to offwhite and blue under varying conditions.The doping systems,utilizing hosts of triphenylphosphine and 9-phenylcarbazole,demonstrate an extended CPP lifetime of 85.9 ms and exhibit a persistent mechanoluminescence property with low pressure response threshold as low as 0.15 N.The information security provided by this CPP material was attained via the using of diverse emission colors and afterglow generated by distinct UV irradiation times and host materials.Alternately,it can also be achieved by observing different emission patterns using R-and L-polarizer.The research has presented a reliable approach for producing CPP materials with high emission efficiency and glum.展开更多
A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-desig...A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-design technique to optimize both the device-level and system-level performance,based on the end-to-end equivalent circuit model of the receiver.Continuous-time linear equalization and shunt peaking are employed to enhance the frequency response.Experimental results reveal that the optical-to-electrical 3-dB bandwidth of the receiver is 48 GHz.Clear open NRZ eye diagrams at56 Gb/s and PAM-4 eye diagrams at 112 Gb/s are achieved without an equalizer in the oscilloscope.The measured bit error rates for 56 Gb/s in NRZ and 112 Gb/s in PAM-4 reach 1×10^(-12)and 2.4×10^(-4)(KP4-FEC:forward error correction)thresholds under-4 dBm input power,respectively.Furthermore,the proposed receiver boasts a power consumption of approximately2.2 pJ/bit,indicating an energy efficient solution for data center traffic growth.展开更多
The phenomenon that different molecular packing modes in aggregates result in different optical properties has attracted intense attention,since it can provide useful information to establish the relationship between ...The phenomenon that different molecular packing modes in aggregates result in different optical properties has attracted intense attention,since it can provide useful information to establish the relationship between the micro-and macro-world.In this paper,DBTDO-DMAC was designed with 9,10-dihydro-9,9-dimethylacridine(DMAC)as electron donor.DBTDO-DPA and DBTDO-Cz were designed for comparison,which adopted diphenylamine(DPA)with twisted structure and carbazole(Cz)with planar structure as donors,respectively.As expected,two polymorphs(Crystal G and Crystal Y)of DBTDO-DMAC were obtained and exhibited distinct properties.Crystal G originating from planar conformation exhibited mechanochromism(MC)phenomenon and the emission color changed from green to yellow with a redshift of 35 nm after grinding.Nevertheless,Crystal Y with folded conformation displayed obvious room-temperature phosphorescence(RTP)with yellow afterglow.Careful single crystal analyses,powder X-ray diffraction and theoretical calculation reveal that the different emissive behaviors are highly related to the molecular conformation and packing modes.The successful adjustment of molecular conformation provides some guidance in the design of other MC and/or RTP luminogens,broadens the molecule family with the tunable molecular conformation and opens up a new avenue for exploring possible adjustment of molecular packing in aggregates.展开更多
A carbon-oxygen-bridged ladder-type donor unit (CO5) was invented and prepared via an "intramolecu- lar demethanolization cyclization" approach. Its single crystal structure indicates enhanced planarity compared w...A carbon-oxygen-bridged ladder-type donor unit (CO5) was invented and prepared via an "intramolecu- lar demethanolization cyclization" approach. Its single crystal structure indicates enhanced planarity compared with the carbon-bridged analogue indacenodithiophene (IDT). Owing to the stronger electron-donating capability of CO5 than IDT, CO5-based donor and acceptor materials show narrower bandgaps. A donor-acceptor (D-A) copolymer donor (PCO5TPD) and an A-D-A nonfullerene acceptor (COSIC) demonstrated higher performance than IDT-based counterparts, PIDTTPD and IDTIC, respec-tively. The better performance of CO5-based materials results from their stronger light-harvesting capability and higher charge-carrier mobilities.展开更多
Recent years have seen a rapid development of lead halide perovskite(LHP)nanocrystals(NCs)as new and promising functional nanomaterials,which exhibit strong potential in a wide range of optoelectronic applications due...Recent years have seen a rapid development of lead halide perovskite(LHP)nanocrystals(NCs)as new and promising functional nanomaterials,which exhibit strong potential in a wide range of optoelectronic applications due to their superior properties and solution-processable advantages.However,to promote their progress in commercialization,overcoming the drawbacks of intrinsic lead toxicity and optimizing material performance are important and must be solved using alternative metal ions to replace Pb ions.In this review,we primarily summarize the recent development of lead-substitution strategies,which focus on the commonalities and differences of their functionalities that are induced by various doped ions.After a brief introduction to the synthesis,nucleation and growth of all-inorganic LHP NCs,a deep discussion of the crystalline structure,electronic band structure,defect states,exciton binding energy,exciton photodynamic process and stability is followed.Specifically,we highlight the importance of both theoretical calculations and experimental characterizations to establish indicative guidelines for high-performance semiconductor nanomaterials.Finally,the light emission applications are discussed,and several issues concerning future research on the controllable synthesis of halide perovskite NCs with low toxicity,superior reproducibility and properties are outlined.展开更多
Highly efficient persistent organic room temperature phosphorescence(RTP) has attracted increasing attention because of promising applications in fields of chemical sensors, optoelectronic devices, information securit...Highly efficient persistent organic room temperature phosphorescence(RTP) has attracted increasing attention because of promising applications in fields of chemical sensors, optoelectronic devices, information security, and bioimaging, etc. Wherein,the crystal engineering of H-aggregation offers stabilization for long-lived triplet exciton for RTP, but the related research is rare because of the scarcity of ideal phosphorescent H-aggregate. Herein, we designed planar tricoordinate organoboron derivatives with molecular arrangement in ideal H-aggregation. The integration of Br atom can largely enhance RTP efficiency through increasing SOC effect, while the antiparallel molecular arrangement causes annihilation of triplet exciton. Thanks to good selfassembly property, their RTP can even be observed in PMMA matrix with doping ratio of merely 1 wt%. We further found that the cryogenic temperature contributes to stabilizing triplet exciton in H-aggregation, leading to red-shifted phosphorescence. By applying high hydrostatic pressure, the phosphorescence was largely enhanced and redshifted, demonstrating the crucial role of H-aggregation on RTP property. In phosphorescent tissue imaging of live mouse, nanoparticles of BrBA exhibited high contrast image via eliminating the interference of autofluorescence.展开更多
For the first time,electroplex emission is utilized to enhance the performance of nondoped blue organic light-emitting diodes(OLEDs).By decorating the twisted blue-emitting platform and adjusting the electronic struct...For the first time,electroplex emission is utilized to enhance the performance of nondoped blue organic light-emitting diodes(OLEDs).By decorating the twisted blue-emitting platform and adjusting the electronic structure,three molecules of 3Cz-Ph-CN,3Cz-mPh-CN,and 3Ph-Cz-CN with a donor-acceptor structure are synthesized and investigated.When external voltage is applied,electroplex emission,which contributes to the emission performance of OLED,can be realized at the interface between the emitting layer and the electron-transporting layer.Accordingly,high external quantum efficiency of 18.1%can be achieved,while the emission wavelength of the device can be controlled in the blue region.Our results provide the possibility to enhance the performance of OLED through electroplex emission,in addition to the generally investigated thermally activated delayed fluorescence(TADF).Excitedly,when 3Ph-Cz-CN is used as host material in orange-emitting phosphorous OLEDs(PO-01 as the dopant),unprecedented high external quantum efficiency of 27.4%can also be achieved.展开更多
The new approaches to construct deep blue aggregation-induced emission (ALE) materials have been explored, which control the conjugation by two different strategies, to make a great step for the commercialization of...The new approaches to construct deep blue aggregation-induced emission (ALE) materials have been explored, which control the conjugation by two different strategies, to make a great step for the commercialization of organic light-emitting diodes. In order to shorten the intramolecular conjugation length, triphenylethylene (tPE) was utilized to construct blue AIEgens as peripheral groups, instead of tetraphenylethylene (TPE), the famous AIE star molecule, to yield three blue AIEgens of 3,4-BtPE-PI, 4,4- BtPE-PI and 4,4-BtPE-PPI. Nondoped electroluminescence devices are fabricated by using these three AIEgens as the emitting material layer, the best performance of 3.8 cd/A as the maximum current efficiency achieved at the commission internationale de l'Eclairage coordinates of (0.17, 0.18).展开更多
Perylene diimide (PDI) derivatives, due to their special opto-electronic property, have been successfully utilized in organic field-effect transistor (OFET), solar cells, and as non-fullerene acceptor and others, ...Perylene diimide (PDI) derivatives, due to their special opto-electronic property, have been successfully utilized in organic field-effect transistor (OFET), solar cells, and as non-fullerene acceptor and others, while few cases in organic light-emitting diodes (OLEDs). In this work, six perylene bisimide-based red emitters, N'N'-bis(2-decyltetradecyl)-1-([1,1′:3′,1″-terphenyl]-5′-yl)perylene-3,4,9,10-diimide (STPH), N'N'-bis(2-decyltetradecyl)-1,7-bis([1,1′:3′,1″-terphenyl]-5′-yl)perylene-3,4,9,10-diimide (DTPH), N,N'- bis(2-decyltetradecyl)-1-(5′-phenyl-[1,1′:3′,1″-terphenyl]-4-yl)perylene-3,4,9,10-diimide (STRPH), N,N′- bis(2-decyltetradecyl)-1,7-bis(5′-phenyl-[ 1 ,1′:3′,1"-terphenyll-4-yl)perylene-3,4,9,10-diimide (DTRPH), N,N′-bis(2-decyltetradecyl)-1-(4-(2,2-diphenylvinyl)phenyl)perylene-3,4,9,10-diimide/STTPE) and N,N'- bis(2-decyltetradecyl)-1,7-bis(4-(2,2-diphenykvinyl)phenyl)perylene-3,4,9,10-diimide (DTTPE), with the excellent chemical, thermal and photo-chemical stability, are synthesized through the convenient Suzuki coupling reaction, in which, the fluorescent properties can be modified easily from ACQ to AIE by just simply changing the bulky volume of the introduced aromatic substituents. After being fabricated into organic light-emitting diodes, STRPH exhibits the best performance with the maximum luminescence, power efficiency, current efficiency and external quantum efficiency of 1,948 cd m-2, 2.04lm W-1, 5.85 cd A-1, 4.93% at Commission Internationale de L'Eclairage (CIE) coordinates of (0.56, 0.34), as the result of the high efficient energy transfer and good energy match achieved in the device.展开更多
Red and near-infrared(NIR)organic light-emitting diodes(OLED)have gained remarkable interest due to their numerous applications.However,the construction of highly emissive emitters is hampered by the energy-gap law an...Red and near-infrared(NIR)organic light-emitting diodes(OLED)have gained remarkable interest due to their numerous applications.However,the construction of highly emissive emitters is hampered by the energy-gap law and aggregation-caused quenching(ACQ)effect.Whereas,aggregationinduced emission(AIE)materials could avoid the undesirable ACQ effect and emit bright light in aggregated state,which is one class of the most promising materials to fabricate high-performance OLED with a high external quantum efficiency and low efficiency roll-off.This review summarizes recent advances in red and NIR OLED with AIE property,including the traditional fluorescence,thermally activated delayed fluorescence,and hybridized local and charge transfer compounds.Meanwhile,the emphasis attention is paid to the molecular design principles,as well as the molecular structure-photophysical characteristics.We also briefly further outlook the challenges and perspective of red and NIR AIE luminogens.展开更多
Regulating the surface plasmon resonance(SPR)of metallic nanostructures is of great interests for optical and catalytic applications,however,it is still a great challenge for tuning SPR features of small metallic nano...Regulating the surface plasmon resonance(SPR)of metallic nanostructures is of great interests for optical and catalytic applications,however,it is still a great challenge for tuning SPR features of small metallic nanoparticles(<10 nm).In this work,we design a unique dielectric support-urchin-like mesoporous silica nanoparticles(U-SiO_(2))with ordered long spikes on its surface,which can well enhance the SPR properties of~3 nm gold nanocrystals(AuNCs).The U-SiO_(2)not only realizes the uniform self-assembly of AuNCs,but also prevents their aggregation due to the unique confinement effect.The finite-difference time-domain simulations show that the AuNCs on U-SiO_(2)can generate plasmonic hot spots with highly enhanced electromagnetic field.Moreover,the hot electrons can be effectively and rapidly transferred through the interface junction to TiO_(2).Thus,a high visible-light-driven photocatalytic activity can be observed,which is 3.8 times higher than that of smooth photocatalysts.The concept of dielectric supports engineering provides a new strategy for tuning SPR of small metallic nanocrystals towards the development of advanced plasmon-based applications.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61925505,92373209 and 62235017).
文摘With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.
基金supported by the National Natural Science Foundation of China (Grant Nos.61925505 and 62405070)"Pioneer"and"Leading Goose"R&D Program of Zhejiang Province (Grant No.2024C01112)National Key Research and Development Program of China (Grant No.2023YFB2807100).
文摘Ferroelectric materials are increasingly garnering substantial interest due to their potential applications in optical communication,optical computing,and sensing,among others.This surge in attention is largely due to recent advancements in the fabrication of high-quality thin films,the precision of domain engineering,and their strong compatibility with complementary metal–oxide–semiconductor(CMOS)processes.
基金National Natural Science Foundation of China(No.21905198)starting Grants of Tianjin University,Tianjin Government for financial support.
文摘Room-temperature phosphorescence(RTP)materials have experienced rapid development due to their potential in organic light-emitting diode,information security,bioimaging,etc.However,the design of chiral organic phosphors with circularly polarized RTP(CPP)property remains a formidable challenge.Here,we introduce a chiral perturbation approach using a combination of chiral binaphthol and phenoselenazine derivative to achieve CPP.The photoactivated CPP in polystyrene(PS)film demonstrates a luminescence dissymmetry factor(glum),emission efficiency,and RTP lifetime up to 9.32×10^(–3),27.0%,and 40.0 ms,respectively.The remarkable sensitivity of PS film to oxygen and temperature enables the adjustable emission colors,ranging from green to offwhite and blue under varying conditions.The doping systems,utilizing hosts of triphenylphosphine and 9-phenylcarbazole,demonstrate an extended CPP lifetime of 85.9 ms and exhibit a persistent mechanoluminescence property with low pressure response threshold as low as 0.15 N.The information security provided by this CPP material was attained via the using of diverse emission colors and afterglow generated by distinct UV irradiation times and host materials.Alternately,it can also be achieved by observing different emission patterns using R-and L-polarizer.The research has presented a reliable approach for producing CPP materials with high emission efficiency and glum.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.62235017 and 62235015)the Young Elite Scientist Sponsorship Program(No.YESS20220688)the National Key Research and Development Program of China(No.2020YFB2205700)。
文摘A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-design technique to optimize both the device-level and system-level performance,based on the end-to-end equivalent circuit model of the receiver.Continuous-time linear equalization and shunt peaking are employed to enhance the frequency response.Experimental results reveal that the optical-to-electrical 3-dB bandwidth of the receiver is 48 GHz.Clear open NRZ eye diagrams at56 Gb/s and PAM-4 eye diagrams at 112 Gb/s are achieved without an equalizer in the oscilloscope.The measured bit error rates for 56 Gb/s in NRZ and 112 Gb/s in PAM-4 reach 1×10^(-12)and 2.4×10^(-4)(KP4-FEC:forward error correction)thresholds under-4 dBm input power,respectively.Furthermore,the proposed receiver boasts a power consumption of approximately2.2 pJ/bit,indicating an energy efficient solution for data center traffic growth.
基金the National Natural Science Foundation of China(21875130)the Starting Foundation of Tianjin Universitythe Project of“100 Talents Program”of Shanxi Province。
文摘The phenomenon that different molecular packing modes in aggregates result in different optical properties has attracted intense attention,since it can provide useful information to establish the relationship between the micro-and macro-world.In this paper,DBTDO-DMAC was designed with 9,10-dihydro-9,9-dimethylacridine(DMAC)as electron donor.DBTDO-DPA and DBTDO-Cz were designed for comparison,which adopted diphenylamine(DPA)with twisted structure and carbazole(Cz)with planar structure as donors,respectively.As expected,two polymorphs(Crystal G and Crystal Y)of DBTDO-DMAC were obtained and exhibited distinct properties.Crystal G originating from planar conformation exhibited mechanochromism(MC)phenomenon and the emission color changed from green to yellow with a redshift of 35 nm after grinding.Nevertheless,Crystal Y with folded conformation displayed obvious room-temperature phosphorescence(RTP)with yellow afterglow.Careful single crystal analyses,powder X-ray diffraction and theoretical calculation reveal that the different emissive behaviors are highly related to the molecular conformation and packing modes.The successful adjustment of molecular conformation provides some guidance in the design of other MC and/or RTP luminogens,broadens the molecule family with the tunable molecular conformation and opens up a new avenue for exploring possible adjustment of molecular packing in aggregates.
基金supported by the National Natural Science Foundation of China (U1401244, 21374025, 21372053, 21572041, and 51503050)the National Natural Science Foundation of China (51673218) for financial support+2 种基金the National Key Research and Development Program of China (2017YFA0206600)the State Key Laboratory of Luminescent Materials and Devices (2016-skllmd-05)the Youth Association for Promoting Innovation (CAS)
文摘A carbon-oxygen-bridged ladder-type donor unit (CO5) was invented and prepared via an "intramolecu- lar demethanolization cyclization" approach. Its single crystal structure indicates enhanced planarity compared with the carbon-bridged analogue indacenodithiophene (IDT). Owing to the stronger electron-donating capability of CO5 than IDT, CO5-based donor and acceptor materials show narrower bandgaps. A donor-acceptor (D-A) copolymer donor (PCO5TPD) and an A-D-A nonfullerene acceptor (COSIC) demonstrated higher performance than IDT-based counterparts, PIDTTPD and IDTIC, respec-tively. The better performance of CO5-based materials results from their stronger light-harvesting capability and higher charge-carrier mobilities.
基金supported by Shanghai Science and Technology Committee(No.21ZR1408800)the National Natural Science Foundation of China(No.11975081).
文摘Recent years have seen a rapid development of lead halide perovskite(LHP)nanocrystals(NCs)as new and promising functional nanomaterials,which exhibit strong potential in a wide range of optoelectronic applications due to their superior properties and solution-processable advantages.However,to promote their progress in commercialization,overcoming the drawbacks of intrinsic lead toxicity and optimizing material performance are important and must be solved using alternative metal ions to replace Pb ions.In this review,we primarily summarize the recent development of lead-substitution strategies,which focus on the commonalities and differences of their functionalities that are induced by various doped ions.After a brief introduction to the synthesis,nucleation and growth of all-inorganic LHP NCs,a deep discussion of the crystalline structure,electronic band structure,defect states,exciton binding energy,exciton photodynamic process and stability is followed.Specifically,we highlight the importance of both theoretical calculations and experimental characterizations to establish indicative guidelines for high-performance semiconductor nanomaterials.Finally,the light emission applications are discussed,and several issues concerning future research on the controllable synthesis of halide perovskite NCs with low toxicity,superior reproducibility and properties are outlined.
基金supported by the National Natural Science Foundation of China(21905198)the Starting Grants of Tianjin University,Tianjin Government.
文摘Highly efficient persistent organic room temperature phosphorescence(RTP) has attracted increasing attention because of promising applications in fields of chemical sensors, optoelectronic devices, information security, and bioimaging, etc. Wherein,the crystal engineering of H-aggregation offers stabilization for long-lived triplet exciton for RTP, but the related research is rare because of the scarcity of ideal phosphorescent H-aggregate. Herein, we designed planar tricoordinate organoboron derivatives with molecular arrangement in ideal H-aggregation. The integration of Br atom can largely enhance RTP efficiency through increasing SOC effect, while the antiparallel molecular arrangement causes annihilation of triplet exciton. Thanks to good selfassembly property, their RTP can even be observed in PMMA matrix with doping ratio of merely 1 wt%. We further found that the cryogenic temperature contributes to stabilizing triplet exciton in H-aggregation, leading to red-shifted phosphorescence. By applying high hydrostatic pressure, the phosphorescence was largely enhanced and redshifted, demonstrating the crucial role of H-aggregation on RTP property. In phosphorescent tissue imaging of live mouse, nanoparticles of BrBA exhibited high contrast image via eliminating the interference of autofluorescence.
基金the National Science Foundation of China(nos.21734007,51573140,91833304,and 11661131001)Fundamental Research Funds for the Central Universities(2042017kf0247)Hubei Province(2017CFA002)for financial support.
文摘For the first time,electroplex emission is utilized to enhance the performance of nondoped blue organic light-emitting diodes(OLEDs).By decorating the twisted blue-emitting platform and adjusting the electronic structure,three molecules of 3Cz-Ph-CN,3Cz-mPh-CN,and 3Ph-Cz-CN with a donor-acceptor structure are synthesized and investigated.When external voltage is applied,electroplex emission,which contributes to the emission performance of OLED,can be realized at the interface between the emitting layer and the electron-transporting layer.Accordingly,high external quantum efficiency of 18.1%can be achieved,while the emission wavelength of the device can be controlled in the blue region.Our results provide the possibility to enhance the performance of OLED through electroplex emission,in addition to the generally investigated thermally activated delayed fluorescence(TADF).Excitedly,when 3Ph-Cz-CN is used as host material in orange-emitting phosphorous OLEDs(PO-01 as the dopant),unprecedented high external quantum efficiency of 27.4%can also be achieved.
基金supported by the National Natural Science Foundation of China (21325416 and 51573140)the National Basic Research Program of China (2013CB834701)
文摘The new approaches to construct deep blue aggregation-induced emission (ALE) materials have been explored, which control the conjugation by two different strategies, to make a great step for the commercialization of organic light-emitting diodes. In order to shorten the intramolecular conjugation length, triphenylethylene (tPE) was utilized to construct blue AIEgens as peripheral groups, instead of tetraphenylethylene (TPE), the famous AIE star molecule, to yield three blue AIEgens of 3,4-BtPE-PI, 4,4- BtPE-PI and 4,4-BtPE-PPI. Nondoped electroluminescence devices are fabricated by using these three AIEgens as the emitting material layer, the best performance of 3.8 cd/A as the maximum current efficiency achieved at the commission internationale de l'Eclairage coordinates of (0.17, 0.18).
基金supported by the National Natural Science Foundation of China (51673151, 61575146 and 21325416)the Open Fund of the State Key Laboratory of Luminescent Materials and Device in South China University of Technology (2017skllmd-04)
文摘Perylene diimide (PDI) derivatives, due to their special opto-electronic property, have been successfully utilized in organic field-effect transistor (OFET), solar cells, and as non-fullerene acceptor and others, while few cases in organic light-emitting diodes (OLEDs). In this work, six perylene bisimide-based red emitters, N'N'-bis(2-decyltetradecyl)-1-([1,1′:3′,1″-terphenyl]-5′-yl)perylene-3,4,9,10-diimide (STPH), N'N'-bis(2-decyltetradecyl)-1,7-bis([1,1′:3′,1″-terphenyl]-5′-yl)perylene-3,4,9,10-diimide (DTPH), N,N'- bis(2-decyltetradecyl)-1-(5′-phenyl-[1,1′:3′,1″-terphenyl]-4-yl)perylene-3,4,9,10-diimide (STRPH), N,N′- bis(2-decyltetradecyl)-1,7-bis(5′-phenyl-[ 1 ,1′:3′,1"-terphenyll-4-yl)perylene-3,4,9,10-diimide (DTRPH), N,N′-bis(2-decyltetradecyl)-1-(4-(2,2-diphenylvinyl)phenyl)perylene-3,4,9,10-diimide/STTPE) and N,N'- bis(2-decyltetradecyl)-1,7-bis(4-(2,2-diphenykvinyl)phenyl)perylene-3,4,9,10-diimide (DTTPE), with the excellent chemical, thermal and photo-chemical stability, are synthesized through the convenient Suzuki coupling reaction, in which, the fluorescent properties can be modified easily from ACQ to AIE by just simply changing the bulky volume of the introduced aromatic substituents. After being fabricated into organic light-emitting diodes, STRPH exhibits the best performance with the maximum luminescence, power efficiency, current efficiency and external quantum efficiency of 1,948 cd m-2, 2.04lm W-1, 5.85 cd A-1, 4.93% at Commission Internationale de L'Eclairage (CIE) coordinates of (0.56, 0.34), as the result of the high efficient energy transfer and good energy match achieved in the device.
基金supported by the National Natural Science Foundation of China(no.21905198)the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Guangzhou 510640,China(South China University of Technology),and the starting grants of Tianjin University and Tianjin Government.
文摘Red and near-infrared(NIR)organic light-emitting diodes(OLED)have gained remarkable interest due to their numerous applications.However,the construction of highly emissive emitters is hampered by the energy-gap law and aggregation-caused quenching(ACQ)effect.Whereas,aggregationinduced emission(AIE)materials could avoid the undesirable ACQ effect and emit bright light in aggregated state,which is one class of the most promising materials to fabricate high-performance OLED with a high external quantum efficiency and low efficiency roll-off.This review summarizes recent advances in red and NIR OLED with AIE property,including the traditional fluorescence,thermally activated delayed fluorescence,and hybridized local and charge transfer compounds.Meanwhile,the emphasis attention is paid to the molecular design principles,as well as the molecular structure-photophysical characteristics.We also briefly further outlook the challenges and perspective of red and NIR AIE luminogens.
基金This work was supported by the National Key Research and Development Program of China(No.2018YFE0201701)the National Natural Science Foundation of China(Nos.21975050,21905052,11975081,and 22105041)+3 种基金Science and Technology Commission of Shanghai Municipality(No.21ZR1408800)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.19JC1410700)the Program of Shanghai Academic Research Leader(No.21XD1420800)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010108).
文摘Regulating the surface plasmon resonance(SPR)of metallic nanostructures is of great interests for optical and catalytic applications,however,it is still a great challenge for tuning SPR features of small metallic nanoparticles(<10 nm).In this work,we design a unique dielectric support-urchin-like mesoporous silica nanoparticles(U-SiO_(2))with ordered long spikes on its surface,which can well enhance the SPR properties of~3 nm gold nanocrystals(AuNCs).The U-SiO_(2)not only realizes the uniform self-assembly of AuNCs,but also prevents their aggregation due to the unique confinement effect.The finite-difference time-domain simulations show that the AuNCs on U-SiO_(2)can generate plasmonic hot spots with highly enhanced electromagnetic field.Moreover,the hot electrons can be effectively and rapidly transferred through the interface junction to TiO_(2).Thus,a high visible-light-driven photocatalytic activity can be observed,which is 3.8 times higher than that of smooth photocatalysts.The concept of dielectric supports engineering provides a new strategy for tuning SPR of small metallic nanocrystals towards the development of advanced plasmon-based applications.