Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grai...Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape.展开更多
Lignin is a renewable carbon resource to produce arenes due to its abundant aromatic structures.For the liquid-phase hydrodeoxygenation(HDO)based on metallic catalysts,the preservation of aromatic rings in lignin or i...Lignin is a renewable carbon resource to produce arenes due to its abundant aromatic structures.For the liquid-phase hydrodeoxygenation(HDO)based on metallic catalysts,the preservation of aromatic rings in lignin or its derivatives remains a challenge.Herein,we synthesized Mndoped Cu/Al_(2)O_(3) catalysts from layered double hydroxides(LDHs)for liquid-phase HDO of lignin-derived anisole.Mn doping significantly enhanced the selective deoxygenation of anisole to arenes and inhibited the saturated hydrogenation on Cu/Al_(2)O_(3).With Mn doping increasing,the surface of Cu particles was modified with MnO_(x) along with enhanced generation of oxygen vacancies(Ov).The evolution of active sites structure led to a controllable adsorption geometry of anisole,which was beneficial for increasing arenes selectivity.As a result,the arenes selectivity obtained on 4Cu/8Mn4AlO_(x) was increased to be more than 6 folds of that value on 4Cu/4Al_(2)O_(3) over the synergistic sites between metal Cu and Ov generated on MnO_(x).展开更多
An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper ca...An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper catalyst and roles in DMO hydrogenation were investigated through various characterization tools,including N2 physical adsorption,XRD,H2-TPR,Methyl glycolate-TPD-MS,XPS,XAES as well.Compared with common ammonia evaporation and co-precipitation methods used in catalyst preparation,this HP method is found to effectively suppress the agglomeration and further size growth of copper nanoparticles by enhancing the interactions between copper and zirconia species.More importantly,uniform distribution of ZrO2 dopant is achieved due to the pseudo-homogeneous reactions in the mixing step of catalyst preparation.A proper amount of zirconium dopant helps achieve the desirable proportion of Cu+/(Cu++CuO)for surface copper species,especially promotes the production of Cu+species originated from Cu-ZrO2 species at the interface of copper and zirconia particles.In comparison with Cu+species formed from copper phyllosilicates reduction,the Cu+sites derived from Cu-ZrO2 species show higher adsorption ability of MG,an important intermediate species in ethylene glycol production.These adsorbed MG molecules further react with atomic hydrogen shifted from adjacent metallic copper surface,leading to a higher catalytic behavior.For the EG production via DMO hydrogenation,the turnover frequency(TOF)normalized by CuO species on CuZr/SiO2 catalyst is 1.8 times than that of traditional Cu/SiO2 counterpart.Due to the enhanced synergy effect between Cu+and Cuo active sites,a lower activation energy of ester hydrogenation on this ZrO2-doped Cu/SiO2 catalyst is believed to be responsible for the significant improvement.展开更多
In this study, we developed a strategy for using the Scoggins procedure in the synthesis of acetamidines as novel C02-triggered switchable surfactants via acetimidates by effectively tuning the chemical equilibrium. T...In this study, we developed a strategy for using the Scoggins procedure in the synthesis of acetamidines as novel C02-triggered switchable surfactants via acetimidates by effectively tuning the chemical equilibrium. The as-synthesized N'-alkyl-N,Ndiethylacetamidines exhibit excellent CO_2/N_2 switchability and their bicarbonate salts have the ability to emulsify oil-water mixtures.展开更多
A series of bifunctional Zn Ce@SBA-15 catalysts with different Zn/Ce ratios were prepared by a solid-state grinding strategy and used in the conversion of ethanol to 1,3-butadiene(ETB).For the supported metal oxides,Z...A series of bifunctional Zn Ce@SBA-15 catalysts with different Zn/Ce ratios were prepared by a solid-state grinding strategy and used in the conversion of ethanol to 1,3-butadiene(ETB).For the supported metal oxides,Zn O serves as the active sites for the dehydrogenation of ethanol,and CeO_(2) promotes the aldolcondensation reaction.Based on the results of Py-FTIR and NH_(3)-TPD,it suggests that the yield of 1,3-butadiene is positively correlated with the number of weak Lewis acid sites on the catalyst surface,given their benefit for aldol-condensation reactions.The catalyst with an optimal Zn/Ce ratio of about 1:5 has the highest concentration of weak Lewis acid.Coupling with the Zn O sites,it contributes to a 98.4%conversion of ethanol and a 45.2%selective of 1,3-butadiene under relatively mild reaction conditions(375°C,101.325 k Pa,and 0.54 h^(-1)).展开更多
CO_(2),one of the main components of greenhouse gases,increased rapidly because of the growing use of fossil fuels.And CaO sorbents possess the capability to be used in capture of CO_(2) at high temperature.In the wor...CO_(2),one of the main components of greenhouse gases,increased rapidly because of the growing use of fossil fuels.And CaO sorbents possess the capability to be used in capture of CO_(2) at high temperature.In the work,Ca-Al complex oxides derived from citrate and stearate intercalated layered double hydroxides were fabricated and their CO_(2) adsorption capacity was compared with that from CO_(3)^(2-)intercalated layered double hydroxides.The results presented that the sorbents(Ca/Al=5)with Ca-Al-citrate layered double hydroxides as precursors performed best and displayed remarkable CO_(2) capture capacity of 52.0%(mass)at the carbonization temperature of 600℃without distinct recession during cycling adsorption/desorption tests.The excellent CO_(2) adsorption capacity of the sorbent was ascribed to its smaller crystallite size of calcinated particles,optimized pore size distribution as well as homogeneous distributed Ca and Al in the sorbent.展开更多
The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. ...The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. A modified non-equilibrium plasma kinetic model was developed to simulate the temporal evolution of particles produced during nanosecond discharge and its afterglow. As important roles in ignition, path fluxes of O and H radicals were analyzed in detail. Different strength of E/N and different discharge duration were applied to the discharge process in this study. And the results presented that a deposited energy of 1–30 m J·cm^(-3) could dramatically reduce the ignition delay time. Furthermore, temperature and radicals analysis was conducted to investigate the effect of non-equilibrium plasma on production of intermediate radicals. Finally, sensitivity analysis was employed to have further understanding on ignition chemistries of the mixture under nanosecond discharge.展开更多
Aporphine alkaloids have diverse pharmacological activities;however,our understanding of their biosynthesis is relatively limited.Previous studies have classified aporphine alkaloids into two categories based on the c...Aporphine alkaloids have diverse pharmacological activities;however,our understanding of their biosynthesis is relatively limited.Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category.In this study,we identified two specific cytochrome P450 enzymes(CYP80G6 and CYP80Q5)with distinct activities toward(S)-configured and(R)-configured substrates from the herbaceous perennial vine Stephania tetrandra,shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories.Additionally,we characterized two CYP719C enzymes(CYP719C3 and CYP719C4)that catalyzed the formation of the methylenedioxy bridge,an essential pharmacophoric group,on the A-and D-rings,respectively,of aporphine alkaloids.Leveraging the functional characterization of these crucial cytochrome P450 enzymes,we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast(Saccharomyces cerevisiae)for the de novo production of compounds such as(R)-glaziovine,(S)-glaziovine,and magnoflorine.This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.展开更多
Cytochrome P450 enzymes play a crucial role as catalysts in the biosynthesis of numerous plant natural products(PNPs).Enhancing the catalytic activity of P450s in host microorganisms is essential for the efficient pro...Cytochrome P450 enzymes play a crucial role as catalysts in the biosynthesis of numerous plant natural products(PNPs).Enhancing the catalytic activity of P450s in host microorganisms is essential for the efficient production of PNPs through synthetic biology.In this study,we engineered Saccharomyces cerevisiae to optimize the microenvironment for boosting the activities of P450s,including coexpression with the redox partner genes,enhancing NADPH supply,expanding the endoplasmic reticulum(ER),strengthening heme biosynthesis,and regulating iron uptake.This created a platform for the efficient production 11,20-dihydroxyferruginol,a key intermediate of the bioactive compound tanshinones.The yield was enhanced by 42.1-fold through 24 effective genetic edits.The optimized strain produced up to 67.69±1.33 mg/L 11,20-dihydroxyferruginol in shake flasks.Our work represents a promising advancement toward constructing yeast cell factories containing P450s and paves the way for microbial biosynthesis of tanshinones in the future.展开更多
Metabolic reprogramming is a hallmark of cancer,including lung cancer.However,the exact underlying mechanism and therapeutic potential are largely unknown.Here we report that protein arginine methyltransferase 6(PRMT6...Metabolic reprogramming is a hallmark of cancer,including lung cancer.However,the exact underlying mechanism and therapeutic potential are largely unknown.Here we report that protein arginine methyltransferase 6(PRMT6)is highly expressed in lung cancer and is required for cell metabolism,tumorigenicity,and cisplatin response of lung cancer.PRMT6 regulated the oxidative pentose phosphate pathway(PPP)flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phosphogluconate dehydrogenase(6PGD)and a-enolase(ENO1).Furthermore,PRMT6 methylated R324 of 6PGD to enhancing its activity;while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate(2-PG)binding to ENO1,respectively.Lastly,targeting PRMT6 blocked the oxidative PPP flux,glycolysis pathway,and tumor growth,as well as enhanced the antitumor effects of cisplatin in lung cancer.Together,this study demonstrates that PRMT6 acts as a posttranslational modification(PTM)regulator of glucose metabolism,which leads to the pathogenesis of lung cancer.It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.展开更多
Oxidizing CIO^(-)and IO_(4)^(-)exist widely in environment and are closely related to the health of organisms.Accordingly,fast,sensitive,and direct detection of the two species is significant.Using IFE in UCNPs@PAA an...Oxidizing CIO^(-)and IO_(4)^(-)exist widely in environment and are closely related to the health of organisms.Accordingly,fast,sensitive,and direct detection of the two species is significant.Using IFE in UCNPs@PAA and Fe(Ⅱ)-phenanthroline system,an elegant ratiometric fluorescent nanosensor,without noble metal nanoparticle,was designed for the detection of CIO-and IO4-.Fe(Ⅱ)-phenanthroline complex is used as fluorescent absorber,which can quench green light of UCNPs with gradually varied extent depending on the concentration of Fe(Ⅱ).The linear zone extends to 800 and 120μmol/L while the detection limit is 1.30 and 0.58μmol/L for NaCIO and NaIO_(4),respectively.Finally,the nanosensor was successfully applied to detect NaCIO and NaIO4spiked in milk,spring water,and tap water with good recoveries.展开更多
A reconstructed Cu-ZnO catalyst with improved stability was fabricated by organic acid treatment method for the liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol.According to the characterization resu...A reconstructed Cu-ZnO catalyst with improved stability was fabricated by organic acid treatment method for the liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol.According to the characterization results of the fresh Cu-ZnO and reconstructed Cu-ZnO,three different forms of ZnO were suggested to be presented on the catalysts:ZnO having strong interaction with Cu species,ZnO that weakly interacted with Cu species and isolated ZnO.The first form of ZnO was believed to be beneficial to the formation of efficient active site Cu^(+),while the latter two forms of ZnO took the main responsibility for the deactivation of Cu-ZnO catalysts in the liquid-phase hydrogenation of diesters.The reconstruction of the Cu-ZnO catalyst by the organic acid treatment method resulted in a new Cu-ZnO catalyst with more Cu^(+)and less ZnO species that leads to deactivation.Furthermore,the deactivation mechanism of Cu-ZnO catalysts in liquid-phase diester hydrogenation in continuous flow system was proposed:the deposition of the polyesters on the catalysts via transesterification catalyzed by weakly interacted ZnO and isolated ZnO leads to the deactivation.These results provided meaningful instructions for designing highly efficient Cu-Zn catalysts for similar ester hydrogenation systems.展开更多
The amination of alkyl alcohols is one of the most promising paths in synthesis of aliphatic amines.Herein,cerium doped nickel-based catalysts were synthesized and tested in a gas-phase amination of n-hexanol to n-hex...The amination of alkyl alcohols is one of the most promising paths in synthesis of aliphatic amines.Herein,cerium doped nickel-based catalysts were synthesized and tested in a gas-phase amination of n-hexanol to n-hexylamine.It was found that the activity of the Ni/γ-Al_(2)O_(3)catalyst is significantly improved by doping an appropriate amount of cerium.The presence of cerium effectively inhibits the agglomeration of nickel particle,resulting in better Ni dispersion.As Ni particle size plays critical role on the catalytic activity,higher turnover frequency of n-hexanol amination was achieved.Cerium doping also improves the reduction ability of nickel and enhances the interactions between Ni and the catalyst support.More weak acid sites were also found in those cerium doped catalysts,which promote another key step—ammonia dissociative adsorption in this reaction system.The overall synergy of Ni nanoparticles and acid sites of this Ni-Ce/γ-Al_(2)O_(3)catalyst boosts its superior catalytic performance in the amination of n-hexanol.展开更多
Lignin utilization is a potential approach for replacing fossil energy and releasing the environment pressure.Herein,we synthesized a series of novel Cu-based catalysts,Cu@NS-SiO_(2)(NS=nano sphere)and alkali metals(N...Lignin utilization is a potential approach for replacing fossil energy and releasing the environment pressure.Herein,we synthesized a series of novel Cu-based catalysts,Cu@NS-SiO_(2)(NS=nano sphere)and alkali metals(Na,K,Rb,and Cs)doped Cu@NS-SiO_(2),and applied them in hydrodeoxygenation reaction of anisole.High Cu dispersion was presented on all catalysts.The modification of alkali metals on Cu@NS-SiO_(2) significantly enhanced the electron density of Cu sites in the following order:Cs>Rb>K>Na,among which Cs decreased the Cu_(2)p_(3)/2 binding energy most(by 0.7 eV).Moreover,the modification did not substantially affect the geometric structure of Cu species.This regulable electronic environment of Cu sites was crucial for selective deoxygenation and inhibiting the hydrogenation of aromatic rings in anisole,and thus promoted the selectivity of benzene.Compared with Cu@NS-SiO_(2)(~59%),the highest benzene selectivity was obtained on Cs/10Cu@NS-SiO_(2) at~83%.展开更多
A series of efficient ruthenium chloride (RuCl_3)-anchored MOF catalysts,such as RuCl_3@MIL-101 (Cr)-Sal,and RuCl_3@MIL-101 (Cr)-DPPB, have been successfully synthesized by post-synthetic modification (PSM)of the term...A series of efficient ruthenium chloride (RuCl_3)-anchored MOF catalysts,such as RuCl_3@MIL-101 (Cr)-Sal,and RuCl_3@MIL-101 (Cr)-DPPB, have been successfully synthesized by post-synthetic modification (PSM)of the terminal amino of MIL-101(Cr)-NH_2 with salicylaldehyde, 2-diphenylphosphinobenzaldehyde (DPPBde) and anchoring of Ru (Ⅲ) ions. The stronger coordination electron donor interaction between Ru (Ⅲ) ions and chelating groups in the RuCl_3@MIL-101 (Cr)-DPPB enhances its catalytic performance for CO_2 hydrogenation to formic acid. The turnover number (TON) of formic acid was up to 831 in reaction time of 2 h with dimethyl sulfoxide (DMSO) and water (H_2O) as mixed solvent, trimethylamine (Et_3N) as organic base, and PPh_3 as electronic additive.展开更多
ZnO-CeO2/SBA-15 catalysts were prepared by two kinds of solid-state grinding method and used for the production of 1,3-butadiene(1,3-BD) from ethanol.A mixture of SBA-15(with or without organic template) and metal pre...ZnO-CeO2/SBA-15 catalysts were prepared by two kinds of solid-state grinding method and used for the production of 1,3-butadiene(1,3-BD) from ethanol.A mixture of SBA-15(with or without organic template) and metal precursors were ground in solid-state.The obtained catalysts were characterized by TG,N2 adsorption-desorption,TEM,XRD,Py-FTIR and NH_3-TPD techniques.Superior dispersion of metal oxides and more exposed acid sites were achieved on the catalyst lOZn_1Ce_5-AS with the presence of organic template in SBA-15 during the solid-state grinding process.The catalytic performance was evaluated in a fixed-bed reactor and a 1,3-butadiene selectivity of as high as 45% is achieved.This is attributed to the coupling effect of Zn and Ce species in the mesopores of SBA-15,in which Zn promotes ethanol dehydrogenation and Ce enhances aldol-condensation,respectively.Additionally,solvent-free method inspires new catalyst synthesis strategy for the production of 1,3-butadiene from ethanol.展开更多
Sterol C24-methyltransferase(SMT) plays multiple important roles in plant growth and development. SMT1, which belongs to the family of transferases and transforms cycloartenol into 24-methylene cycloartenol, is involv...Sterol C24-methyltransferase(SMT) plays multiple important roles in plant growth and development. SMT1, which belongs to the family of transferases and transforms cycloartenol into 24-methylene cycloartenol, is involved in the biosynthesis of 24-methyl sterols. Here, we report the cloning and characterization of a cDNA encoding a sterol C24-methyltransferase from Tripterygium wilfordii(Tw SMT1). Tw SMT1(Gen Bank access number KU885950) is a 1530 bp cDNA with a 1041 bp open reading frame predicted to encode a 346-amino acid, 38.62 k Da protein. The polypeptide encoded by the SMT1 cDNA was expressed and purified as a recombinant protein from Escherichia coli(E. coli) and showed SMT activity. The expression of Tw SMT1 was highly up-regulated in T. wilfordii cell suspension cultures treated with methyl jasmonate(Me JA). Tissue expression pattern analysis showed higher expression in the phellem layer compared to the other four organs(leaf, stem, xylem and phloem), which is about ten times that of the lowest expression in leaf. The results are meaningful for the study of sterolbiosynthesis of T. wilfordii and will further lay the foundations for the research in regulating both the content of other main compounds and growth and development of T. wilfordii.展开更多
基金support of the Deutsche Forschungsgemeinschaft(DFG),Grant no.AL 1343/7–1,AL 1343/8–1,Yi 103/3–1。
文摘Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape.
基金supported by National Natural Science Foundation of China (21938008).
文摘Lignin is a renewable carbon resource to produce arenes due to its abundant aromatic structures.For the liquid-phase hydrodeoxygenation(HDO)based on metallic catalysts,the preservation of aromatic rings in lignin or its derivatives remains a challenge.Herein,we synthesized Mndoped Cu/Al_(2)O_(3) catalysts from layered double hydroxides(LDHs)for liquid-phase HDO of lignin-derived anisole.Mn doping significantly enhanced the selective deoxygenation of anisole to arenes and inhibited the saturated hydrogenation on Cu/Al_(2)O_(3).With Mn doping increasing,the surface of Cu particles was modified with MnO_(x) along with enhanced generation of oxygen vacancies(Ov).The evolution of active sites structure led to a controllable adsorption geometry of anisole,which was beneficial for increasing arenes selectivity.As a result,the arenes selectivity obtained on 4Cu/8Mn4AlO_(x) was increased to be more than 6 folds of that value on 4Cu/4Al_(2)O_(3) over the synergistic sites between metal Cu and Ov generated on MnO_(x).
基金financial support from the National Natural Science Foundation of China(21878227,U1510203)。
文摘An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper catalyst and roles in DMO hydrogenation were investigated through various characterization tools,including N2 physical adsorption,XRD,H2-TPR,Methyl glycolate-TPD-MS,XPS,XAES as well.Compared with common ammonia evaporation and co-precipitation methods used in catalyst preparation,this HP method is found to effectively suppress the agglomeration and further size growth of copper nanoparticles by enhancing the interactions between copper and zirconia species.More importantly,uniform distribution of ZrO2 dopant is achieved due to the pseudo-homogeneous reactions in the mixing step of catalyst preparation.A proper amount of zirconium dopant helps achieve the desirable proportion of Cu+/(Cu++CuO)for surface copper species,especially promotes the production of Cu+species originated from Cu-ZrO2 species at the interface of copper and zirconia particles.In comparison with Cu+species formed from copper phyllosilicates reduction,the Cu+sites derived from Cu-ZrO2 species show higher adsorption ability of MG,an important intermediate species in ethylene glycol production.These adsorbed MG molecules further react with atomic hydrogen shifted from adjacent metallic copper surface,leading to a higher catalytic behavior.For the EG production via DMO hydrogenation,the turnover frequency(TOF)normalized by CuO species on CuZr/SiO2 catalyst is 1.8 times than that of traditional Cu/SiO2 counterpart.Due to the enhanced synergy effect between Cu+and Cuo active sites,a lower activation energy of ester hydrogenation on this ZrO2-doped Cu/SiO2 catalyst is believed to be responsible for the significant improvement.
基金supported by the China National Petroleum Corporation (RIPED-2017-JS-87)
文摘In this study, we developed a strategy for using the Scoggins procedure in the synthesis of acetamidines as novel C02-triggered switchable surfactants via acetimidates by effectively tuning the chemical equilibrium. The as-synthesized N'-alkyl-N,Ndiethylacetamidines exhibit excellent CO_2/N_2 switchability and their bicarbonate salts have the ability to emulsify oil-water mixtures.
基金National Natural Science Foundation of China for financial support(21878227)。
文摘A series of bifunctional Zn Ce@SBA-15 catalysts with different Zn/Ce ratios were prepared by a solid-state grinding strategy and used in the conversion of ethanol to 1,3-butadiene(ETB).For the supported metal oxides,Zn O serves as the active sites for the dehydrogenation of ethanol,and CeO_(2) promotes the aldolcondensation reaction.Based on the results of Py-FTIR and NH_(3)-TPD,it suggests that the yield of 1,3-butadiene is positively correlated with the number of weak Lewis acid sites on the catalyst surface,given their benefit for aldol-condensation reactions.The catalyst with an optimal Zn/Ce ratio of about 1:5 has the highest concentration of weak Lewis acid.Coupling with the Zn O sites,it contributes to a 98.4%conversion of ethanol and a 45.2%selective of 1,3-butadiene under relatively mild reaction conditions(375°C,101.325 k Pa,and 0.54 h^(-1)).
基金Financial support by National Key Research and Development Program of China(2017YFB0603300)the Program for New Century Excellent Talents in University(NCET-13-0411)the Program of Introducing Talents of Discipline to Universities(B06006)。
文摘CO_(2),one of the main components of greenhouse gases,increased rapidly because of the growing use of fossil fuels.And CaO sorbents possess the capability to be used in capture of CO_(2) at high temperature.In the work,Ca-Al complex oxides derived from citrate and stearate intercalated layered double hydroxides were fabricated and their CO_(2) adsorption capacity was compared with that from CO_(3)^(2-)intercalated layered double hydroxides.The results presented that the sorbents(Ca/Al=5)with Ca-Al-citrate layered double hydroxides as precursors performed best and displayed remarkable CO_(2) capture capacity of 52.0%(mass)at the carbonization temperature of 600℃without distinct recession during cycling adsorption/desorption tests.The excellent CO_(2) adsorption capacity of the sorbent was ascribed to its smaller crystallite size of calcinated particles,optimized pore size distribution as well as homogeneous distributed Ca and Al in the sorbent.
基金Supported by the National Natural Science Foundation of China(No.51376021)the Fundamental Research Funds for the Central Universities(No.2015YJS146)
文摘The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. A modified non-equilibrium plasma kinetic model was developed to simulate the temporal evolution of particles produced during nanosecond discharge and its afterglow. As important roles in ignition, path fluxes of O and H radicals were analyzed in detail. Different strength of E/N and different discharge duration were applied to the discharge process in this study. And the results presented that a deposited energy of 1–30 m J·cm^(-3) could dramatically reduce the ignition delay time. Furthermore, temperature and radicals analysis was conducted to investigate the effect of non-equilibrium plasma on production of intermediate radicals. Finally, sensitivity analysis was employed to have further understanding on ignition chemistries of the mixture under nanosecond discharge.
基金supported by the National Key R&D Program of China(2020YFA0908000)the National Natural Science Foundation of China(82011530137,31961133007)+2 种基金Scientific and technological innovation project of CACMS(CI2023D002,CI2023E002)Key project at central government level:The ability to establish sustainable use of valuable Chinese medicine resources(2060302)Vetenskapsradet(2018-06003),Stiftelsen for internationalisering av hogre utbildning och forskning。
文摘Aporphine alkaloids have diverse pharmacological activities;however,our understanding of their biosynthesis is relatively limited.Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category.In this study,we identified two specific cytochrome P450 enzymes(CYP80G6 and CYP80Q5)with distinct activities toward(S)-configured and(R)-configured substrates from the herbaceous perennial vine Stephania tetrandra,shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories.Additionally,we characterized two CYP719C enzymes(CYP719C3 and CYP719C4)that catalyzed the formation of the methylenedioxy bridge,an essential pharmacophoric group,on the A-and D-rings,respectively,of aporphine alkaloids.Leveraging the functional characterization of these crucial cytochrome P450 enzymes,we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast(Saccharomyces cerevisiae)for the de novo production of compounds such as(R)-glaziovine,(S)-glaziovine,and magnoflorine.This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.
基金supported by the National Key R&D Program of China(2020YFA0908000)Scientific and technological innovation project of China Academy of Chinese Medical Sciences(CI2023D002,CI2023E002,CI2021A04110,CI2021B014)+1 种基金the National Natural Science Foundation of China(81822046)Key project at central government level:The ability to establish sustainable use of valuable Chinese medicine resources(2060302).
文摘Cytochrome P450 enzymes play a crucial role as catalysts in the biosynthesis of numerous plant natural products(PNPs).Enhancing the catalytic activity of P450s in host microorganisms is essential for the efficient production of PNPs through synthetic biology.In this study,we engineered Saccharomyces cerevisiae to optimize the microenvironment for boosting the activities of P450s,including coexpression with the redox partner genes,enhancing NADPH supply,expanding the endoplasmic reticulum(ER),strengthening heme biosynthesis,and regulating iron uptake.This created a platform for the efficient production 11,20-dihydroxyferruginol,a key intermediate of the bioactive compound tanshinones.The yield was enhanced by 42.1-fold through 24 effective genetic edits.The optimized strain produced up to 67.69±1.33 mg/L 11,20-dihydroxyferruginol in shake flasks.Our work represents a promising advancement toward constructing yeast cell factories containing P450s and paves the way for microbial biosynthesis of tanshinones in the future.
基金supported by grants from the Natural Science Foundation of Tianjin(21JCZDJC00060,China)the National Nature Science Foundation of China(81973356,91957120,81902826,and 81672781)+4 种基金the Fundamental Research Funds for the Central Universities of Nankai University(3206054,91923101,63213082 and 92122017,China)the State Key Laboratory of Drug Research(SIMM2105KF-08,China)the National Key R&D Program of China(No.2018YFC2002000)the Innovative S&T Projects for Young Researchers of Tianjin Academy of Agricultural Science(grant No.201918,China)the Natural Science Foundation of Tianjin(19JCYBJC29600 and 21JCYBJC00180,China)。
文摘Metabolic reprogramming is a hallmark of cancer,including lung cancer.However,the exact underlying mechanism and therapeutic potential are largely unknown.Here we report that protein arginine methyltransferase 6(PRMT6)is highly expressed in lung cancer and is required for cell metabolism,tumorigenicity,and cisplatin response of lung cancer.PRMT6 regulated the oxidative pentose phosphate pathway(PPP)flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phosphogluconate dehydrogenase(6PGD)and a-enolase(ENO1).Furthermore,PRMT6 methylated R324 of 6PGD to enhancing its activity;while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate(2-PG)binding to ENO1,respectively.Lastly,targeting PRMT6 blocked the oxidative PPP flux,glycolysis pathway,and tumor growth,as well as enhanced the antitumor effects of cisplatin in lung cancer.Together,this study demonstrates that PRMT6 acts as a posttranslational modification(PTM)regulator of glucose metabolism,which leads to the pathogenesis of lung cancer.It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.
基金Project supported by the Natural Science Foundation of Shandong Province(ZR2016EMM20,ZR2019PEM012)National Natural Science Foundation of China(21808114)the Foundation(ZZ20190310)of State Key Laboratory of Biobased Material and Green Papermaking。
文摘Oxidizing CIO^(-)and IO_(4)^(-)exist widely in environment and are closely related to the health of organisms.Accordingly,fast,sensitive,and direct detection of the two species is significant.Using IFE in UCNPs@PAA and Fe(Ⅱ)-phenanthroline system,an elegant ratiometric fluorescent nanosensor,without noble metal nanoparticle,was designed for the detection of CIO-and IO4-.Fe(Ⅱ)-phenanthroline complex is used as fluorescent absorber,which can quench green light of UCNPs with gradually varied extent depending on the concentration of Fe(Ⅱ).The linear zone extends to 800 and 120μmol/L while the detection limit is 1.30 and 0.58μmol/L for NaCIO and NaIO_(4),respectively.Finally,the nanosensor was successfully applied to detect NaCIO and NaIO4spiked in milk,spring water,and tap water with good recoveries.
基金We are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.21878227 and 22278309).
文摘A reconstructed Cu-ZnO catalyst with improved stability was fabricated by organic acid treatment method for the liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol.According to the characterization results of the fresh Cu-ZnO and reconstructed Cu-ZnO,three different forms of ZnO were suggested to be presented on the catalysts:ZnO having strong interaction with Cu species,ZnO that weakly interacted with Cu species and isolated ZnO.The first form of ZnO was believed to be beneficial to the formation of efficient active site Cu^(+),while the latter two forms of ZnO took the main responsibility for the deactivation of Cu-ZnO catalysts in the liquid-phase hydrogenation of diesters.The reconstruction of the Cu-ZnO catalyst by the organic acid treatment method resulted in a new Cu-ZnO catalyst with more Cu^(+)and less ZnO species that leads to deactivation.Furthermore,the deactivation mechanism of Cu-ZnO catalysts in liquid-phase diester hydrogenation in continuous flow system was proposed:the deposition of the polyesters on the catalysts via transesterification catalyzed by weakly interacted ZnO and isolated ZnO leads to the deactivation.These results provided meaningful instructions for designing highly efficient Cu-Zn catalysts for similar ester hydrogenation systems.
基金the National Natural Science Foundation of China for the financial support(Grant No.21878227).
文摘The amination of alkyl alcohols is one of the most promising paths in synthesis of aliphatic amines.Herein,cerium doped nickel-based catalysts were synthesized and tested in a gas-phase amination of n-hexanol to n-hexylamine.It was found that the activity of the Ni/γ-Al_(2)O_(3)catalyst is significantly improved by doping an appropriate amount of cerium.The presence of cerium effectively inhibits the agglomeration of nickel particle,resulting in better Ni dispersion.As Ni particle size plays critical role on the catalytic activity,higher turnover frequency of n-hexanol amination was achieved.Cerium doping also improves the reduction ability of nickel and enhances the interactions between Ni and the catalyst support.More weak acid sites were also found in those cerium doped catalysts,which promote another key step—ammonia dissociative adsorption in this reaction system.The overall synergy of Ni nanoparticles and acid sites of this Ni-Ce/γ-Al_(2)O_(3)catalyst boosts its superior catalytic performance in the amination of n-hexanol.
基金The work was supported by National Natural Science Foundation of China(21938008)Haihe Laboratory of Sustainable Chemical Transformations(CYZC202106).
文摘Lignin utilization is a potential approach for replacing fossil energy and releasing the environment pressure.Herein,we synthesized a series of novel Cu-based catalysts,Cu@NS-SiO_(2)(NS=nano sphere)and alkali metals(Na,K,Rb,and Cs)doped Cu@NS-SiO_(2),and applied them in hydrodeoxygenation reaction of anisole.High Cu dispersion was presented on all catalysts.The modification of alkali metals on Cu@NS-SiO_(2) significantly enhanced the electron density of Cu sites in the following order:Cs>Rb>K>Na,among which Cs decreased the Cu_(2)p_(3)/2 binding energy most(by 0.7 eV).Moreover,the modification did not substantially affect the geometric structure of Cu species.This regulable electronic environment of Cu sites was crucial for selective deoxygenation and inhibiting the hydrogenation of aromatic rings in anisole,and thus promoted the selectivity of benzene.Compared with Cu@NS-SiO_(2)(~59%),the highest benzene selectivity was obtained on Cs/10Cu@NS-SiO_(2) at~83%.
基金Financial support from the National Natural Science Foundation of China(NSFC, Nos. 21776211, 21325626)the Program for New Century Excellent Talents in University(No. NCET-13-0411)the Program of Introducing Talents of Discipline to Universities(No. B06006)
文摘A series of efficient ruthenium chloride (RuCl_3)-anchored MOF catalysts,such as RuCl_3@MIL-101 (Cr)-Sal,and RuCl_3@MIL-101 (Cr)-DPPB, have been successfully synthesized by post-synthetic modification (PSM)of the terminal amino of MIL-101(Cr)-NH_2 with salicylaldehyde, 2-diphenylphosphinobenzaldehyde (DPPBde) and anchoring of Ru (Ⅲ) ions. The stronger coordination electron donor interaction between Ru (Ⅲ) ions and chelating groups in the RuCl_3@MIL-101 (Cr)-DPPB enhances its catalytic performance for CO_2 hydrogenation to formic acid. The turnover number (TON) of formic acid was up to 831 in reaction time of 2 h with dimethyl sulfoxide (DMSO) and water (H_2O) as mixed solvent, trimethylamine (Et_3N) as organic base, and PPh_3 as electronic additive.
基金financial support from the National Natural Science Foundation of China(No.21878227)。
文摘ZnO-CeO2/SBA-15 catalysts were prepared by two kinds of solid-state grinding method and used for the production of 1,3-butadiene(1,3-BD) from ethanol.A mixture of SBA-15(with or without organic template) and metal precursors were ground in solid-state.The obtained catalysts were characterized by TG,N2 adsorption-desorption,TEM,XRD,Py-FTIR and NH_3-TPD techniques.Superior dispersion of metal oxides and more exposed acid sites were achieved on the catalyst lOZn_1Ce_5-AS with the presence of organic template in SBA-15 during the solid-state grinding process.The catalytic performance was evaluated in a fixed-bed reactor and a 1,3-butadiene selectivity of as high as 45% is achieved.This is attributed to the coupling effect of Zn and Ce species in the mesopores of SBA-15,in which Zn promotes ethanol dehydrogenation and Ce enhances aldol-condensation,respectively.Additionally,solvent-free method inspires new catalyst synthesis strategy for the production of 1,3-butadiene from ethanol.
基金supported by the National Natural Science Foundation of China (81422053 and 81373906 to Wei Gao and 81325023 to Luqi Huang)the Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan (CIT&TCD20170324 to Wei Gao)the Key project at Central Government Level: The Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources (2060302 to Luqi Huang)
文摘Sterol C24-methyltransferase(SMT) plays multiple important roles in plant growth and development. SMT1, which belongs to the family of transferases and transforms cycloartenol into 24-methylene cycloartenol, is involved in the biosynthesis of 24-methyl sterols. Here, we report the cloning and characterization of a cDNA encoding a sterol C24-methyltransferase from Tripterygium wilfordii(Tw SMT1). Tw SMT1(Gen Bank access number KU885950) is a 1530 bp cDNA with a 1041 bp open reading frame predicted to encode a 346-amino acid, 38.62 k Da protein. The polypeptide encoded by the SMT1 cDNA was expressed and purified as a recombinant protein from Escherichia coli(E. coli) and showed SMT activity. The expression of Tw SMT1 was highly up-regulated in T. wilfordii cell suspension cultures treated with methyl jasmonate(Me JA). Tissue expression pattern analysis showed higher expression in the phellem layer compared to the other four organs(leaf, stem, xylem and phloem), which is about ten times that of the lowest expression in leaf. The results are meaningful for the study of sterolbiosynthesis of T. wilfordii and will further lay the foundations for the research in regulating both the content of other main compounds and growth and development of T. wilfordii.