期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modulation of phase boundary and domain structures to engineer strain properties in BNT-based ferroelectrics
1
作者 yule yang Zhiyong Liu +7 位作者 Pengrong Ren Yuqing Mao Haijun Sun Bingliang Liang Pu Mao Kun Guo Bing Xie Longlong Shu 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第7期967-975,共9页
Bismuth sodium titanate(BNT)ceramics exhibit outstanding strain responses but are unfavorable for application in high-sensitivity displacement actuators due to the large negative strain resulting from irreversible cha... Bismuth sodium titanate(BNT)ceramics exhibit outstanding strain responses but are unfavorable for application in high-sensitivity displacement actuators due to the large negative strain resulting from irreversible changes in their phase transition and domain structure.Here,(1−x)Bi_(0.50)Na_(0.41)K_(0.09)TiO_(3)-xNaNbO_(3)(BNKT−xNN)solid solutions were prepared to improve the strain properties through the strategy of modulating the phase boundary and domain structures.The introduction of sodium niobate could effectively regulate the relative content of the tetragonal(P4bm)and rhombohedral(R3c)phases in the phase boundary region.The ferroelectric-to-relaxor phase transition(T_(F−R))was reduced,and the ergodic relaxor(ER)state was nurtured at room temperature.Excellent zero-negative strain properties of S=0.41%and d_(33)^(*)=742 pm/V were achieved from the reversible transition between the ER and ferroelectric states under an applied electric field(x=0.04).Additionally,understanding the domain states via piezoelectric force microscopy(PFM)and firstorder reversal curve(FORC)revealed that the superior strain responses originated from the reversible inter-transformation of substable macrodomains and polar nanoregions(PNRs)in the phase boundary.This study provides new insight into the interplay between the evolution of phase boundaries and domain structures and the strain properties of BNT-based ceramics. 展开更多
关键词 bismuth sodium titanate(BNT) domain structure phase boundary strain response relaxor state
原文传递
Achieving high dielectric energy-storage properties through a phase coexistence design and viscous polymer process in BNT-based ceramics
2
作者 yule yang Juanjuan Wang +9 位作者 Ruiyi Jing Wenjing Shi Leiyang Zhang Chao Li Xinyu Zeng Fukang Chen Gang Liu Xiaolian Chao Yan Yan Li Jin 《Journal of Materiomics》 SCIE CSCD 2023年第6期1004-1014,共11页
In the last few decades,dielectric capacitors have gotten a lot of attention because they can store more power and charge and discharge very quickly.But it has a low energy-storage density(Wrec),efficiency(h),and temp... In the last few decades,dielectric capacitors have gotten a lot of attention because they can store more power and charge and discharge very quickly.But it has a low energy-storage density(Wrec),efficiency(h),and temperature stability.By adding Pb(Mg1/3Nb2/3)O3(PMN)and(Bi0$1Sr0.85)TiO3(BST)to a nonstoichiometric(Bi0$51Na0.5)TiO3(BNT)matrix,the goal is to change the phase transition properties and make the material more relaxor ferroelectric(RFE)by lowering the remnant polarization Pr and keeping the maximum polarization Pmax.A viscous polymer process(VPP)is used to improve the electric breakdown strength,which is also a key part of being able to store energy.By working together,ceramics with the formula 0.79[0.85BNT-0.15PMN]-0.21BST(BP-0.21BST)are made.The phase structure has been changed from a rhombohedral phase to a rhombohedral-tetragonal coexisted phase.This is beneficial for RFE properties and gives a Wrec of 6.45 J/cm^(3) and a h of 90%at 400 kV/cm.Also,the energy-storage property is very temperature stable between 30 and 150C.These results show that process optimization and composition design can be used to improve the energy storage properties,and that the dielectric ceramic materials made can be used in high-powder pulse dielectric capacitors. 展开更多
关键词 BNT ENERGY-STORAGE Charge-discharge Viscous polymer process Relaxor ferroelectric
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部