Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and ...Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.展开更多
Healthcare is a big application scenario of blockchain, and blockchains used in healthcare are called health blockchain. In general, blockchain blocks are open and the transactions in them are public. If some privacy ...Healthcare is a big application scenario of blockchain, and blockchains used in healthcare are called health blockchain. In general, blockchain blocks are open and the transactions in them are public. If some privacy data are involved in these transactions, they will be leaked. Owing to healthcare system involving a great deal of privacy data, certain security mechanisms must be built to protect these privacy data in health blockchain. Furthermore, because the core of security mechanisms is the key management schemes, the appropriate key management schemes should be designed before blockchains can be used in healthcare system. Here, according to the features of health blockchain, the authors use a body sensor network to design a lightweight backup and efficient recovery scheme for keys of health blockchain. The authors' analyses show that the scheme has high security and performance, and it can be used to protect privacy messages on health blockchain effectively and to promote the application of health blockchain.展开更多
基金supported by the Key R&D Projects in Yunnan Province under Grant Number 202203AC100004Additional funding was provided by the Major Science and Technology Project of the Ministry of Water Resources under Grant Number SKS-2022057.
文摘Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.
基金This work was supported in part by following funds: Shandong Provincial Natural Science Foundation (ZR2015FM020, ZR2014FQ007) National Natural Science Foundation (61502258) National Spark Program (2015GA740096).
文摘Healthcare is a big application scenario of blockchain, and blockchains used in healthcare are called health blockchain. In general, blockchain blocks are open and the transactions in them are public. If some privacy data are involved in these transactions, they will be leaked. Owing to healthcare system involving a great deal of privacy data, certain security mechanisms must be built to protect these privacy data in health blockchain. Furthermore, because the core of security mechanisms is the key management schemes, the appropriate key management schemes should be designed before blockchains can be used in healthcare system. Here, according to the features of health blockchain, the authors use a body sensor network to design a lightweight backup and efficient recovery scheme for keys of health blockchain. The authors' analyses show that the scheme has high security and performance, and it can be used to protect privacy messages on health blockchain effectively and to promote the application of health blockchain.