Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen...Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials.展开更多
Tight sand gas is an important unconventional gas resource occurring widely in different petroleum basins. In coal-bearing formations of the Upper Triassic in the Sichuan Basin and the Carboniferous and Permian in the...Tight sand gas is an important unconventional gas resource occurring widely in different petroleum basins. In coal-bearing formations of the Upper Triassic in the Sichuan Basin and the Carboniferous and Permian in the Ordos Basin, coal measure strata and tight sandstone constitute widely distributed source-reservoir assemblages and form the basic conditions for the formation of large tight sand gas fields. Similar to most tight gas basins in North America, the Sichuan, and Ordos Basins, all experienced overall moderate uplift and denudation in Meso- Cenozoic after earlier deep burial. Coal seam adsorption principles and actual coal sample simulation experiment results show that in the course of strata uplift, pressure drops and desorption occurs in coal measure strata, resulting in the discharge of substantial free gas. This ac- counts for 28 %-42 % of total gas expulsion from source rocks. At the same time, the free gases formerly stored in the pores of coal measure source rocks were also dis- charged at a large scale due to volumetric expansion re- sulting from strata uplift and pressure drop. Based on experimental data, the gas totally discharged in the uplift period of Upper Paleozoic in the Ordos Basin, and Upper Triassic Xujiahe Formation in the Sichuan Basin is calcu- lated as (3-6) × 10^5 m^3/km^2. Geological evidence for gasaccumulation in the uplift period is found in the gas reservoir analysis of the above two basins. Firstly, natural gas discharged in the uplift period has a lighter carbon isotope ratio and lower maturity than that formed in the burial period, belonging to that generated at the early stage of source rock maturity, and is absorbed and stored in coal measure strata. Secondly, physical simulation experiment results at high-temperature and high-salinity inclusions, and almost actual geologic conditions confirm that sub- stantial gas charging and accumulation occurred in the uplift period of the coal measure strata of the two basins. Diffusive flow is the main mode for gas accumulation in the uplift period, which probably reached 56 × 10^12 m^3 in the uplift period of the Xujiahe Formation of the Sichuan Basin, compensating for the diffusive loss of gas in the gas reservoirs, and has an important contribution to the formation of large gas fields. The above insight has promoted the gas resource extent and potential of the coal measure tight sand uplift area; therefore, we need to reassess the areas formerly believed unfavorable where the uplift scale is large, so as to get better resource potential and exploration prospects.展开更多
Konosirus punctatus is an economically important marine fishery resource and is widely distributed from the Indian to Pacific oceans.It is a good non-model species for genetic studies on salinity and temperature adapt...Konosirus punctatus is an economically important marine fishery resource and is widely distributed from the Indian to Pacific oceans.It is a good non-model species for genetic studies on salinity and temperature adaptation.However,a high-quality reference genome has not yet been reported.展开更多
The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and mode...The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and model theories.By theoretical calculations based on ab-initio method,we have predicted and geometry optimized the structures of Carbon-rich(C-rich)dusts,carbon(^(12)C),iron carbide(Fe C),silicon carbide(Si C),even silicon(^(28)Si),iron(^(56)Fe),and investigated the optical absorption coefficients and emission coefficients of these materials in 0D(zero-dimensional),1D,and 2D nanostructures.Comparing the nebular spectra of the supernovae(SN)with the coefficient of dust,we find that the optical absorption coefficient of the 2D^(12)C,^(28)Si,^(56)Fe,Si C and Fe C structure corresponds to the absorption peak displayed in the infrared band(5–8)μm of the spectrum at 7554 days after the SN1987A explosion.It also corresponds to the spectrum of 535 days after the explosion of SN2018bsz,when the wavelength was in the range of(0.2–0.8)and(3–10)μm.Nevertheless,2D Si C and Fe C correspond to the spectrum of 844 days after the explosion of SN2010jl,when the wavelength is within(0.08–10)μm.Therefore,Fe C and Si C may be the second type of dust in SN1987A corresponding to infrared band(5–8)μm of dust and may be in the ejecta of SN2010jl and SN2018bsz.The nano-scale C-rich dust size is~0.1 nm in SN2018bsz,which is 3 orders of magnitude lower than the value of 0.1μm.In addition,due to the ionization reaction in the supernova remnant(SNR),we also calculated the Infrared Radiation(IR)spectrum of dust cations.We find that the cation of the 2D layered(Si C)^(2+)has a higher IR spectrum than those of the cation(Si C)^(1+)and neutral(Si C)^(0+).展开更多
The newly discovered ternary chalcogenide superconductor Bi_(2)Rh_(3)Se_(2) has attracted growing attention,which provides an opportunity to explore the interplay between charge density wave(CDW)order and superconduct...The newly discovered ternary chalcogenide superconductor Bi_(2)Rh_(3)Se_(2) has attracted growing attention,which provides an opportunity to explore the interplay between charge density wave(CDW)order and superconductivity.However,whether the phase transition around 240 K can be attributed to the formation of CDW remains controversial.To help resolve the debate,we study the electronic structure of Bi_(2)Rh_(3)Se_(2) by angle-resolved photoemission spectroscopy,focusing on the nature of its high-temperature phase transition around 240 K.Our measurements demonstrate that the phase transition at 240 K is a second-order CDW phase transition.Our results reveal(i)a 2×2 CDW order in Bi_(2)Rh_(3)Se_(2),accompanied by the reconstruction of electronic structure,such as band folding,band splitting,and opening of CDW gaps at and away from the Fermi level;(ii)the existence of electron-boson coupling,which is manifested as an apparent kink and peak-dip-hump structure in dispersion.Our observations thus enable us to shed light on the nature of CDW order and superconductivity in Bi_(2)Rh_(3)Se_(2).展开更多
Dynamic channel assignment(DCA)plays a key role in extending vehicular ad-hoc network capacity and mitigating congestion.However,channel assignment under vehicular direct communication scenarios faces mutual influence...Dynamic channel assignment(DCA)plays a key role in extending vehicular ad-hoc network capacity and mitigating congestion.However,channel assignment under vehicular direct communication scenarios faces mutual influence of large-scale nodes,the lack of centralized coordination,unknown global state information,and other challenges.To solve this problem,a multiagent reinforcement learning(RL)based cooperative DCA(RLCDCA)mechanism is proposed.Specifically,each vehicular node can successfully learn the proper strategies of channel selection and backoff adaptation from the real-time channel state information(CSI)using two cooperative RL models.In addition,neural networks are constructed as nonlinear Q-function approximators,which facilitates the mapping of the continuously sensed input to the mixed policy output.Nodes are driven to locally share and incorporate their individual rewards such that they can optimize their policies in a distributed collaborative manner.Simulation results show that the proposed multiagent RL-CDCA can better reduce the one-hop packet delay by no less than 73.73%,improve the packet delivery ratio by no less than 12.66%on average in a highly dense situation,and improve the fairness of the global network resource allocation.展开更多
High-entropy alloys greatly expand the alloy design range and offer new possibilities for improving material performance.Based on the worldwide research efforts in the last decade,the excellent mechanical properties a...High-entropy alloys greatly expand the alloy design range and offer new possibilities for improving material performance.Based on the worldwide research efforts in the last decade,the excellent mechanical properties and promising radiation and corrosion resistance of this group of materials have been demonstrated.High-entropy alloys with body-centered cubic(BCC)structures,especially refractory high-entropy alloys,are considered as promising materials for high-temperature applications in advanced nuclear reactors.However,the extreme reactor conditions including high temperature,high radiation damage,high stress,and complex corrosive environment require a comprehensive evaluation of the material properties for their actual service in nuclear reactors.This review summarizes the current progress on BCC high-entropy alloys from the aspects of neutron economy and activation,mechanical properties,high-temperature stability,radiation resistance,as well as corrosion resistance.Although the current development of BCC high-entropy alloys for nuclear applications is still at an early stage as the large design space of this group of alloys has not been fully explored,the current research findings provide a good basis for the understanding and prediction of material behaviors with different compositions and microstructures.Further in-depth understanding of the degradation mechanisms and characterization of material properties in response to conditions close to reactor environment are necessary.A critical down-selection of potential candidates is also crucial for further comprehensive evaluation and engineering validation.展开更多
基金the National Natural Science Foundation of China(Grant No.12004439)Hunan Province Postgraduate Research and Innovation Project(Grant No.CX20230229)the computational resources from the High Performance Computing Center of Central South University.
文摘Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials.
文摘Tight sand gas is an important unconventional gas resource occurring widely in different petroleum basins. In coal-bearing formations of the Upper Triassic in the Sichuan Basin and the Carboniferous and Permian in the Ordos Basin, coal measure strata and tight sandstone constitute widely distributed source-reservoir assemblages and form the basic conditions for the formation of large tight sand gas fields. Similar to most tight gas basins in North America, the Sichuan, and Ordos Basins, all experienced overall moderate uplift and denudation in Meso- Cenozoic after earlier deep burial. Coal seam adsorption principles and actual coal sample simulation experiment results show that in the course of strata uplift, pressure drops and desorption occurs in coal measure strata, resulting in the discharge of substantial free gas. This ac- counts for 28 %-42 % of total gas expulsion from source rocks. At the same time, the free gases formerly stored in the pores of coal measure source rocks were also dis- charged at a large scale due to volumetric expansion re- sulting from strata uplift and pressure drop. Based on experimental data, the gas totally discharged in the uplift period of Upper Paleozoic in the Ordos Basin, and Upper Triassic Xujiahe Formation in the Sichuan Basin is calcu- lated as (3-6) × 10^5 m^3/km^2. Geological evidence for gasaccumulation in the uplift period is found in the gas reservoir analysis of the above two basins. Firstly, natural gas discharged in the uplift period has a lighter carbon isotope ratio and lower maturity than that formed in the burial period, belonging to that generated at the early stage of source rock maturity, and is absorbed and stored in coal measure strata. Secondly, physical simulation experiment results at high-temperature and high-salinity inclusions, and almost actual geologic conditions confirm that sub- stantial gas charging and accumulation occurred in the uplift period of the coal measure strata of the two basins. Diffusive flow is the main mode for gas accumulation in the uplift period, which probably reached 56 × 10^12 m^3 in the uplift period of the Xujiahe Formation of the Sichuan Basin, compensating for the diffusive loss of gas in the gas reservoirs, and has an important contribution to the formation of large gas fields. The above insight has promoted the gas resource extent and potential of the coal measure tight sand uplift area; therefore, we need to reassess the areas formerly believed unfavorable where the uplift scale is large, so as to get better resource potential and exploration prospects.
基金supported by the National Natural Science Foundation of China(41806156)Zhejiang Provincial Natural Science Foundation of China(LY20C190008,LY22D060001,Y22D064798)+3 种基金Science and Technology Project of Zhoushan(2020C21016)Fund of Guangdong Provincial Key Laboratory of Fishery Ecology and Environment(FEEL-2021-8)Open Foundation from Key Laboratory of Tropical Marine Bio-Resources and Ecology,Chinese Academy of Sciences(LMB20201005)Open Foundation from Marine Sciences in the First-Class Subjects of Zhejiang(20200201,20200202)。
文摘Konosirus punctatus is an economically important marine fishery resource and is widely distributed from the Indian to Pacific oceans.It is a good non-model species for genetic studies on salinity and temperature adaptation.However,a high-quality reference genome has not yet been reported.
基金Supported by the National Natural Science Foundation of China。
文摘The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and model theories.By theoretical calculations based on ab-initio method,we have predicted and geometry optimized the structures of Carbon-rich(C-rich)dusts,carbon(^(12)C),iron carbide(Fe C),silicon carbide(Si C),even silicon(^(28)Si),iron(^(56)Fe),and investigated the optical absorption coefficients and emission coefficients of these materials in 0D(zero-dimensional),1D,and 2D nanostructures.Comparing the nebular spectra of the supernovae(SN)with the coefficient of dust,we find that the optical absorption coefficient of the 2D^(12)C,^(28)Si,^(56)Fe,Si C and Fe C structure corresponds to the absorption peak displayed in the infrared band(5–8)μm of the spectrum at 7554 days after the SN1987A explosion.It also corresponds to the spectrum of 535 days after the explosion of SN2018bsz,when the wavelength was in the range of(0.2–0.8)and(3–10)μm.Nevertheless,2D Si C and Fe C correspond to the spectrum of 844 days after the explosion of SN2010jl,when the wavelength is within(0.08–10)μm.Therefore,Fe C and Si C may be the second type of dust in SN1987A corresponding to infrared band(5–8)μm of dust and may be in the ejecta of SN2010jl and SN2018bsz.The nano-scale C-rich dust size is~0.1 nm in SN2018bsz,which is 3 orders of magnitude lower than the value of 0.1μm.In addition,due to the ionization reaction in the supernova remnant(SNR),we also calculated the Infrared Radiation(IR)spectrum of dust cations.We find that the cation of the 2D layered(Si C)^(2+)has a higher IR spectrum than those of the cation(Si C)^(1+)and neutral(Si C)^(0+).
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1604204)National Natural Science Foundation of China(Grant No.92265101)+1 种基金Science and Technology Innovation Program of Hunan Province(Grant No.2022RC3068)Innovation-driven Plan in Central South University(Grant No.2016CXS032)。
文摘The newly discovered ternary chalcogenide superconductor Bi_(2)Rh_(3)Se_(2) has attracted growing attention,which provides an opportunity to explore the interplay between charge density wave(CDW)order and superconductivity.However,whether the phase transition around 240 K can be attributed to the formation of CDW remains controversial.To help resolve the debate,we study the electronic structure of Bi_(2)Rh_(3)Se_(2) by angle-resolved photoemission spectroscopy,focusing on the nature of its high-temperature phase transition around 240 K.Our measurements demonstrate that the phase transition at 240 K is a second-order CDW phase transition.Our results reveal(i)a 2×2 CDW order in Bi_(2)Rh_(3)Se_(2),accompanied by the reconstruction of electronic structure,such as band folding,band splitting,and opening of CDW gaps at and away from the Fermi level;(ii)the existence of electron-boson coupling,which is manifested as an apparent kink and peak-dip-hump structure in dispersion.Our observations thus enable us to shed light on the nature of CDW order and superconductivity in Bi_(2)Rh_(3)Se_(2).
基金Project supported by the National Natural Science Foundation of China(Nos.61672082 and 61822101)the Beijing Municipal Natural Science Foundation,China(No.4181002)the Beihang University Innovation and Practice Fund for Graduate,China(No.YCSJ-02-2018-05)。
文摘Dynamic channel assignment(DCA)plays a key role in extending vehicular ad-hoc network capacity and mitigating congestion.However,channel assignment under vehicular direct communication scenarios faces mutual influence of large-scale nodes,the lack of centralized coordination,unknown global state information,and other challenges.To solve this problem,a multiagent reinforcement learning(RL)based cooperative DCA(RLCDCA)mechanism is proposed.Specifically,each vehicular node can successfully learn the proper strategies of channel selection and backoff adaptation from the real-time channel state information(CSI)using two cooperative RL models.In addition,neural networks are constructed as nonlinear Q-function approximators,which facilitates the mapping of the continuously sensed input to the mixed policy output.Nodes are driven to locally share and incorporate their individual rewards such that they can optimize their policies in a distributed collaborative manner.Simulation results show that the proposed multiagent RL-CDCA can better reduce the one-hop packet delay by no less than 73.73%,improve the packet delivery ratio by no less than 12.66%on average in a highly dense situation,and improve the fairness of the global network resource allocation.
基金supported by the National Key Research and Development Program of China(Grant Nos.2019YFA0209900 and 2017YFB0304403)the National Natural Science Foundation of China(Grant No.12075179)+1 种基金the Nuclear Material Technology Innovation Center Project(Grant No.ICNM 2020 ZH05)the Continuous Basic Scientific Research Project(Grant No.WDJC-2019-10)
文摘High-entropy alloys greatly expand the alloy design range and offer new possibilities for improving material performance.Based on the worldwide research efforts in the last decade,the excellent mechanical properties and promising radiation and corrosion resistance of this group of materials have been demonstrated.High-entropy alloys with body-centered cubic(BCC)structures,especially refractory high-entropy alloys,are considered as promising materials for high-temperature applications in advanced nuclear reactors.However,the extreme reactor conditions including high temperature,high radiation damage,high stress,and complex corrosive environment require a comprehensive evaluation of the material properties for their actual service in nuclear reactors.This review summarizes the current progress on BCC high-entropy alloys from the aspects of neutron economy and activation,mechanical properties,high-temperature stability,radiation resistance,as well as corrosion resistance.Although the current development of BCC high-entropy alloys for nuclear applications is still at an early stage as the large design space of this group of alloys has not been fully explored,the current research findings provide a good basis for the understanding and prediction of material behaviors with different compositions and microstructures.Further in-depth understanding of the degradation mechanisms and characterization of material properties in response to conditions close to reactor environment are necessary.A critical down-selection of potential candidates is also crucial for further comprehensive evaluation and engineering validation.