Teratozoospermia is usually associated with defective spermiogenesis and is a disorder with considerable genetic heterogeneity. Although previous studies have identified several teratozoospermia-associated genes, the ...Teratozoospermia is usually associated with defective spermiogenesis and is a disorder with considerable genetic heterogeneity. Although previous studies have identified several teratozoospermia-associated genes, the etiology remains unknown for a majority of affected men. Here, we identified a homozygous missense mutation and a compound heterozygous mutation of CCIN in patients suffering from teratozoospermia. CCIN encodes the cytoskeletal protein Calicin that is involved in the formation and maintenance of the highly regular organization of the calyx of mammalian spermatozoa, and has been proposed to play a role in sperm head structure remodeling during the process of spermiogenesis. Our morphological and ultrastructural analyses of the spermatozoa obtained from all three men harboring deleterious CCIN mutants reveal severe head malformation. Further immunofluorescence assays unveil markedly reduced levels of Calicin in spermatozoa. These patient phenotypes are successfully recapitulated in mouse models expressing the disease-associated variants, confirming the role of Calicin in male fertility.Notably, all mutant spermatozoa from mice and human patients fail to adhere to the zona mass, which likely is the major mechanistic reason for CCIN-mutant sperm-derived infertility. Finally, the use of intracytoplasmic sperm injections(ICSI) successfully makes mutated mice and two couples with CCIN variants have healthy offspring. Taken together, our findings identify the role of Calicin in sperm head shaping and male fertility, providing important guidance for genetic counseling and assisted reproduction treatments.展开更多
Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell(IHC).This feature is believed to be critical for audit...Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell(IHC).This feature is believed to be critical for audition over a wide dynamic range,but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear.By means of three-dimensional electron microscopy and artificial intelligence-based algorithms,we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice.We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization.Moreover,our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole.展开更多
Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes un- der compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible p...Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes un- der compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Fur- ther, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore~ when nanoparticles are compressed in semifiexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.展开更多
基金supported by the National Natural Science Foundation of China(31930063,81771533,81901531,31971137,and 81871163)the National Key Research and Development Program of China(2018YFC2000102,2018YFA0107004,and 2018YFC1003000)+2 种基金the Shanghai Municipal Health Commission and Collaborative Innovation Cluster Project(2019CXJQ01)SHIPM-pi Fund(JY201801)SHIPM-mu Fund(JC201802)。
文摘Teratozoospermia is usually associated with defective spermiogenesis and is a disorder with considerable genetic heterogeneity. Although previous studies have identified several teratozoospermia-associated genes, the etiology remains unknown for a majority of affected men. Here, we identified a homozygous missense mutation and a compound heterozygous mutation of CCIN in patients suffering from teratozoospermia. CCIN encodes the cytoskeletal protein Calicin that is involved in the formation and maintenance of the highly regular organization of the calyx of mammalian spermatozoa, and has been proposed to play a role in sperm head structure remodeling during the process of spermiogenesis. Our morphological and ultrastructural analyses of the spermatozoa obtained from all three men harboring deleterious CCIN mutants reveal severe head malformation. Further immunofluorescence assays unveil markedly reduced levels of Calicin in spermatozoa. These patient phenotypes are successfully recapitulated in mouse models expressing the disease-associated variants, confirming the role of Calicin in male fertility.Notably, all mutant spermatozoa from mice and human patients fail to adhere to the zona mass, which likely is the major mechanistic reason for CCIN-mutant sperm-derived infertility. Finally, the use of intracytoplasmic sperm injections(ICSI) successfully makes mutated mice and two couples with CCIN variants have healthy offspring. Taken together, our findings identify the role of Calicin in sperm head shaping and male fertility, providing important guidance for genetic counseling and assisted reproduction treatments.
基金the National Natural Science Foundation of China(81800901)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(QD2018015)+2 种基金the Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32030200)the Bureau of International Cooperation,Chinese Academy of Sciences(153D31KYSB20170059).
文摘Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell(IHC).This feature is believed to be critical for audition over a wide dynamic range,but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear.By means of three-dimensional electron microscopy and artificial intelligence-based algorithms,we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice.We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization.Moreover,our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole.
文摘Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes un- der compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Fur- ther, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore~ when nanoparticles are compressed in semifiexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.