Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be dep...Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.展开更多
Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile termin...Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost.展开更多
With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasin...With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.展开更多
As a newly emerging computing paradigm, edge computing shows great capability in supporting and boosting 5G and Internet-of-Things (IoT) oriented applications, e.g., scientific workflows with low-latency, elastic, and...As a newly emerging computing paradigm, edge computing shows great capability in supporting and boosting 5G and Internet-of-Things (IoT) oriented applications, e.g., scientific workflows with low-latency, elastic, and on-demand provisioning of computational resources. However, the geographically distributed IoT resources are usually interconnected with each other through unreliable communications and ever-changing contexts, which brings in strong heterogeneity, potential vulnerability, and instability of computing infrastructures at different levels. It thus remains a challenge to enforce high fault-tolerance of edge-IoT scientific computing task flows, especially when the supporting computing infrastructures are deployed in a collaborative, distributed, and dynamic environment that is prone to faults and failures. This work proposes a novel fault-tolerant scheduling approach for edge-IoT collaborative workflows. The proposed approach first conducts a dependency-based task allocation analysis, then leverages a Primary-Backup (PB) strategy for tolerating task failures that occur at edge nodes, and finally designs a deep Q-learning algorithm for identifying the near-optimal workflow task scheduling scheme. We conduct extensive simulative case studies on multiple randomly-generated workflow and real-world edge-IoT server position datasets. Results clearly suggest that our proposed method outperforms the state-of-the-art competitors in terms of task completion ratio, server active time, and resource utilization.展开更多
基金supported by the Innovation Fund Project of Jiangxi Normal University(YJS2022065)the Domestic Visiting Program of Jiangxi Normal University.
文摘Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.
文摘Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost.
基金This research is partially supported by the National Natural Science Foundation of China under Grant No.62376043Science and Technology Program of Sichuan Province under Grant Nos.2020JDRC0067,2023JDRC0087,and 24NSFTD0025.
文摘With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.
基金supported National Key R&D Program of China with Grant number 2018YFB1403602Chongqing Technological innovation foundations with Grant numbers cstc2019jscx-msxm0652 and cstc2019jscx-fxyd0385+3 种基金Chongqing Key RD project with Grant number cstc2018jszx-cyzdX0081Jiangxi Key RD project with Grant number 2018ACE50029Sponsored by technological program organized by SGCC(No.52094020000U)Technology Innovation and Application Development Foundation of Chongqing under Grant cstc2020jscx-gksbX0010.
文摘As a newly emerging computing paradigm, edge computing shows great capability in supporting and boosting 5G and Internet-of-Things (IoT) oriented applications, e.g., scientific workflows with low-latency, elastic, and on-demand provisioning of computational resources. However, the geographically distributed IoT resources are usually interconnected with each other through unreliable communications and ever-changing contexts, which brings in strong heterogeneity, potential vulnerability, and instability of computing infrastructures at different levels. It thus remains a challenge to enforce high fault-tolerance of edge-IoT scientific computing task flows, especially when the supporting computing infrastructures are deployed in a collaborative, distributed, and dynamic environment that is prone to faults and failures. This work proposes a novel fault-tolerant scheduling approach for edge-IoT collaborative workflows. The proposed approach first conducts a dependency-based task allocation analysis, then leverages a Primary-Backup (PB) strategy for tolerating task failures that occur at edge nodes, and finally designs a deep Q-learning algorithm for identifying the near-optimal workflow task scheduling scheme. We conduct extensive simulative case studies on multiple randomly-generated workflow and real-world edge-IoT server position datasets. Results clearly suggest that our proposed method outperforms the state-of-the-art competitors in terms of task completion ratio, server active time, and resource utilization.