Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ...Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.展开更多
The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series...The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series of Pd supported on mixed metal oxide(MMO) catalysts with controllable acidic/basic/metallic sites on the surface. We study the relationship between the nature, synergy,and proximity of active sites and the catalytic performance of the multifunctional catalyst in the tandem reaction, in detail. In the existence of Lewis acid and base sites, the catalysts with medium-strength acidic/basic sites show preferred activity and/or MIBK selectivity. For multifunctional catalysts, the catalytic properties are more than just a collection of active sites, and the Pd/Mg_3Al-MMO catalyst possessing 0.1% Pd loading and ~0.4 acid/base molar ratio exhibits the optimal 42.1% acetone conversion and 37.2% MIBK yield, which is among the best reported so far for this tandem reaction under similar conditions. Moreover, the proximity test indicates that the intimate distance between acidic/basic/metallic sites can greatly shorten the diffusion time of the intermediate species from each active site, leading to an enhancement in the catalytic performance.展开更多
To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data....To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data.In this method,the measured wavelength and the corresponding concentration were trained by a BP neural network,so that the accuracy of the measurement system was optimized.The wavelength was used as the training set and got into the input layer of the three layer BP network model which is used as the input value of the network,and the corresponding actual concentration value was used as the output value of the network,and the optimal network structure was trained.This paper discovers a preferable correlation between the predicted value and the actual value,where the former is approximately equal to the latter.The correlation coefficients of the measured and predicted values for a sucrose concentration were 1.000 89 and 1.003 94;similarly,correlations of0.999 51 and 1.018 8 for a glucose concentration were observed.The results demonstrate that the BP neural network can improve the prediction accuracy of the nonlinear relationship between the interference spectral data and the concentration in NCF sensing systems.展开更多
In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reser...In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reserve. The viscous reserves were of high structural dip angle. In addition delta depositional system represented highly variable geomorphology, where stacked sandbodies and shale bedding are crossing each other frequently. In order to keep a higher production rate, using horizontal wells along with water injection was not enough;therefore, detailed reservoir characterization, well pattern pilot experiment and GeoSteering were used to optimize previous development strategy and keep horizontal trajectories safely landing into reservoir target zone. The stratigraphic sequence architecture that is derived from seismic interpretations captured the variation within these high dip structural backgrounds very effectively. The best combination of choices was “Injecting Water outside from OWC” and “Stair Shaped Horizontal Trajectories”. The borehole collision risks of these optimized strategies were then analyzed and controlled successfully by the GeoSteering tools during trajectory landing process. The reservoir development performance is improved tremendously as result of these renewed development strategies.展开更多
In this paper, we developed a novel process integrating vacuum distillation with atmospheric chlorination reaction(VD-ACR) to realize the flexible production of tetrachloroethane(TeCA) and pentachloroethane(PCA)from 1...In this paper, we developed a novel process integrating vacuum distillation with atmospheric chlorination reaction(VD-ACR) to realize the flexible production of tetrachloroethane(TeCA) and pentachloroethane(PCA)from 1,2-dichloroethane(DCA). During the simulation, the distillation column and reactors were operated for separation and chlorination respectively under variable pressures and temperatures. It is interesting to note that VD-ACR processes producing pure TeCA or PCA can exhibit the similar configuration parameters after optimization, which enables the flexible production of TeCA and PCA with different molar ratios via changing operating parameters. The molar ratio of TeC A/PCA can be fine-tuned within the range of 0.9:0.1-0.1:0.9 through adjusting the amount of chlorine pumped into side reactors, giving rise to the increase of the heat duty of reboiler by five times. A pilot-scale experiment was then operated based-upon this VD-ACR process and the result matched well with the simulation. Therefore, the VD-ACR model presented in this study will be beneficial for the industrial-scale flexible production of TeCA and PCA from DCA.展开更多
The addition of organic matter via green manure rotation with rice is considered a smart agricultural practice to maintain soil productivity and support environmental sustainability.However,few studies have quantitati...The addition of organic matter via green manure rotation with rice is considered a smart agricultural practice to maintain soil productivity and support environmental sustainability.However,few studies have quantitatively assessed the impact of green manure rotation and application on the interactions between agronomic management practice,soil fertility,and crop production.In this study,800 pairs of data from 108 studies conducted in the agricultural region of the Yangtze River,China were assessed,and random forest(RF)modeling was performed to evaluate the effect of green manure rotation and application on rice yield and soil properties.Compared to a winter fallow system,rotation and application of green manure significantly increased rice yield and soil organic carbon(SOC)by 8.1%and 8.4%,respectively.According to the RF models,rice type,green manure application rate and duration,mineral and organic nitrogen application rates,and initial SOC content and soil pH were identified as the main drivers for rice yield and SOC changes.Marginal benefit analysis revealed that green manure application rates for early rice in double cropping system and the rice in single cropping system were approximately 20 and 26 t ha-1(fresh weight),respectively.Further,the optimum green manure application rate was approximately 25 t ha-1(fresh weight)for carbon sequestration.However,it should be noted that green manure application to soils with high SOC level might result in the soils becoming a net carbon source.Our study contributed scientific and quantitative indicators for achieving the greatest benefits in rice yield and increasing SOC upon application of green manure.展开更多
To monitor and investigate chemical reactions in real time and in situ is a long-standing,challenging goal in chemistry.Herein,an electric potential-promoted oxidative coupling reaction of organoboron compounds withou...To monitor and investigate chemical reactions in real time and in situ is a long-standing,challenging goal in chemistry.Herein,an electric potential-promoted oxidative coupling reaction of organoboron compounds without the addition of base is reported,and the transmetallation process involved is monitored in real time and in situ with the scanning tunneling microscopy break single-molecule junctions(STMBJ)technique.We found that the electric potential applied determined the transmetallation.At low-bias voltage,the first-step transmetallation process occurred and afforded Au─C-bonded aryl gold intermediates.The electronic properties of organoboron compounds have a strong influence on the transmetallation process,and electron-rich compounds facilitate this transformation.At high-bias voltage,the second-step transmetallation process took place,and the corresponding intermediate(highly reactive diaryl metal complex)was detected with the assistance of Pd(OAc)_(2).Our work demonstrates the applications of STMBJ on in situ monitoring and catalyzing of chemical reactions and provides a new methodology to fabricate singlemolecule devices.展开更多
Electrical switching of a single-molecule junction provides a practical module to perform sophisticated operations in electronic devices.However,designing an all-electrically-driven molecular switch is a great challen...Electrical switching of a single-molecule junction provides a practical module to perform sophisticated operations in electronic devices.However,designing an all-electrically-driven molecular switch is a great challenge.Here,we experimentally and theoretically investigated the charge transport characteristics of isoindigo(ISO)-molecules at the single-molecule level using the scanning tunneling microscope break junction technique.We find that the single-molecule junctions of ISO-molecules display bias voltage-driven switching characteristics.These switches are realtime,reversible,and nondestructive under low-bias voltages.Experimental results show that the mechanism of the switch is not the transition from nonresonant charge transport to resonant charge transport,but it is the shift of the frontier orbital energy levels of ISO-molecules and the change of the interfacial electronic coupling with bias voltage.Our results will advance the design of high-performance bias voltage-driven molecular switches.展开更多
Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m^3, respectively,throughout the measure...Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m^3, respectively,throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM(organic matter = 1.6 × OC(organic carbon)) and SIA(secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca^2+were major components in coarse particles. Moreover, secondary components, mainly SOA(secondary organic aerosol) and SIA,accounted for 46%-96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of(NH4)2SO4, NH4NO3, Ca SO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons.展开更多
A microelectrode glucose biosensor based on a three-dimensional hybrid nanoporous platinum/graphene oxide nanostructure was developed for rapid glucose detection of tomato and cucumber fruits.The nanostructure was fab...A microelectrode glucose biosensor based on a three-dimensional hybrid nanoporous platinum/graphene oxide nanostructure was developed for rapid glucose detection of tomato and cucumber fruits.The nanostructure was fabricated by a two-step modification method on a microelectrode for loading a larger amount of glucose oxidase.The nanoporous structure was prepared on the surface of the platinum microelectrode by electrochemical etching,and then graphene oxide was deposited on the prepared nanoporous electrode by electrochemical deposition.The nanoporous platinum/graphene oxide nanostructure had the advantage of improving the effective surface area of the electrode and the loading quantity of glucose oxidase.As a result,the biosensor achieved a wide range of 0.1-20.0 mmol/L in glucose detection,which had the ability to accurately detect the glucose content.It was found that the three-dimensional hybrid nanostructure on the electrode surface realized the rapid direct electrochemistry of glucose oxidase.Therefore,the biosensor achieved high glucose detection sensitivity 11.64μA·L/(mmol.cm^(2)),low detection limit(13μmol/L)and rapid response time(reaching 95%steady-state response within 3 s),when calibrating in glucose standard solution.In agricultural application,the as-prepared biosensor was employed to detect the glucose concentration of tomato and cucumber samples.The results showed that the relative deviation of this method was less than 5%when compared with that of high-performance liquid chromatography,implying high accuracy of the presented biosensor in glucose detection in plants.展开更多
基金funded by the National Natural Science Foundation of China(61991413)the China Postdoctoral Science Foundation(2019M651142)+1 种基金the Natural Science Foundation of Liaoning Province(2021-KF-12-07)the Natural Science Foundations of Liaoning Province(2023-MS-322).
文摘Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.
文摘The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series of Pd supported on mixed metal oxide(MMO) catalysts with controllable acidic/basic/metallic sites on the surface. We study the relationship between the nature, synergy,and proximity of active sites and the catalytic performance of the multifunctional catalyst in the tandem reaction, in detail. In the existence of Lewis acid and base sites, the catalysts with medium-strength acidic/basic sites show preferred activity and/or MIBK selectivity. For multifunctional catalysts, the catalytic properties are more than just a collection of active sites, and the Pd/Mg_3Al-MMO catalyst possessing 0.1% Pd loading and ~0.4 acid/base molar ratio exhibits the optimal 42.1% acetone conversion and 37.2% MIBK yield, which is among the best reported so far for this tandem reaction under similar conditions. Moreover, the proximity test indicates that the intimate distance between acidic/basic/metallic sites can greatly shorten the diffusion time of the intermediate species from each active site, leading to an enhancement in the catalytic performance.
基金Supported by the National Natural Science Foundation of China(61307122)the University Science and Technology Innovation Team Support Project of Henan Province(13IRTTHN016)the Innovative and Training Project of Post Graduate Funding from the Henan Normal University(201310476046)
文摘To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data.In this method,the measured wavelength and the corresponding concentration were trained by a BP neural network,so that the accuracy of the measurement system was optimized.The wavelength was used as the training set and got into the input layer of the three layer BP network model which is used as the input value of the network,and the corresponding actual concentration value was used as the output value of the network,and the optimal network structure was trained.This paper discovers a preferable correlation between the predicted value and the actual value,where the former is approximately equal to the latter.The correlation coefficients of the measured and predicted values for a sucrose concentration were 1.000 89 and 1.003 94;similarly,correlations of0.999 51 and 1.018 8 for a glucose concentration were observed.The results demonstrate that the BP neural network can improve the prediction accuracy of the nonlinear relationship between the interference spectral data and the concentration in NCF sensing systems.
文摘In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reserve. The viscous reserves were of high structural dip angle. In addition delta depositional system represented highly variable geomorphology, where stacked sandbodies and shale bedding are crossing each other frequently. In order to keep a higher production rate, using horizontal wells along with water injection was not enough;therefore, detailed reservoir characterization, well pattern pilot experiment and GeoSteering were used to optimize previous development strategy and keep horizontal trajectories safely landing into reservoir target zone. The stratigraphic sequence architecture that is derived from seismic interpretations captured the variation within these high dip structural backgrounds very effectively. The best combination of choices was “Injecting Water outside from OWC” and “Stair Shaped Horizontal Trajectories”. The borehole collision risks of these optimized strategies were then analyzed and controlled successfully by the GeoSteering tools during trajectory landing process. The reservoir development performance is improved tremendously as result of these renewed development strategies.
基金Supported by the National Natural Science Foundation of China(21276126,61203020)Prospective Joint Research Project of Jiangsu Province(BY2014005-02,BY2015005-02)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In this paper, we developed a novel process integrating vacuum distillation with atmospheric chlorination reaction(VD-ACR) to realize the flexible production of tetrachloroethane(TeCA) and pentachloroethane(PCA)from 1,2-dichloroethane(DCA). During the simulation, the distillation column and reactors were operated for separation and chlorination respectively under variable pressures and temperatures. It is interesting to note that VD-ACR processes producing pure TeCA or PCA can exhibit the similar configuration parameters after optimization, which enables the flexible production of TeCA and PCA with different molar ratios via changing operating parameters. The molar ratio of TeC A/PCA can be fine-tuned within the range of 0.9:0.1-0.1:0.9 through adjusting the amount of chlorine pumped into side reactors, giving rise to the increase of the heat duty of reboiler by five times. A pilot-scale experiment was then operated based-upon this VD-ACR process and the result matched well with the simulation. Therefore, the VD-ACR model presented in this study will be beneficial for the industrial-scale flexible production of TeCA and PCA from DCA.
基金financially supported by the National Natural Science Foundation of China(No.41907073)Additionally,the work contributes to the activities of the Jiangsu Agricultural Science and Technology Innovation Fund,China(No.CX(22)2002).
文摘The addition of organic matter via green manure rotation with rice is considered a smart agricultural practice to maintain soil productivity and support environmental sustainability.However,few studies have quantitatively assessed the impact of green manure rotation and application on the interactions between agronomic management practice,soil fertility,and crop production.In this study,800 pairs of data from 108 studies conducted in the agricultural region of the Yangtze River,China were assessed,and random forest(RF)modeling was performed to evaluate the effect of green manure rotation and application on rice yield and soil properties.Compared to a winter fallow system,rotation and application of green manure significantly increased rice yield and soil organic carbon(SOC)by 8.1%and 8.4%,respectively.According to the RF models,rice type,green manure application rate and duration,mineral and organic nitrogen application rates,and initial SOC content and soil pH were identified as the main drivers for rice yield and SOC changes.Marginal benefit analysis revealed that green manure application rates for early rice in double cropping system and the rice in single cropping system were approximately 20 and 26 t ha-1(fresh weight),respectively.Further,the optimum green manure application rate was approximately 25 t ha-1(fresh weight)for carbon sequestration.However,it should be noted that green manure application to soils with high SOC level might result in the soils becoming a net carbon source.Our study contributed scientific and quantitative indicators for achieving the greatest benefits in rice yield and increasing SOC upon application of green manure.
基金This work was supported by the National Natural Science Foundation of China(grant nos.21875279,21790362,and 22075080)the Shanghai Municipal Science and Technology Major Project(grant no.2018SHZDZX03)+1 种基金the Fundamental Research Funds for the Central Universities,the Programme of Introducing Talents of Discipline to Universities(grant no.B16017)the Program of Shanghai Academic/Technology Research Leader(grant no.19XD1421100).
文摘To monitor and investigate chemical reactions in real time and in situ is a long-standing,challenging goal in chemistry.Herein,an electric potential-promoted oxidative coupling reaction of organoboron compounds without the addition of base is reported,and the transmetallation process involved is monitored in real time and in situ with the scanning tunneling microscopy break single-molecule junctions(STMBJ)technique.We found that the electric potential applied determined the transmetallation.At low-bias voltage,the first-step transmetallation process occurred and afforded Au─C-bonded aryl gold intermediates.The electronic properties of organoboron compounds have a strong influence on the transmetallation process,and electron-rich compounds facilitate this transformation.At high-bias voltage,the second-step transmetallation process took place,and the corresponding intermediate(highly reactive diaryl metal complex)was detected with the assistance of Pd(OAc)_(2).Our work demonstrates the applications of STMBJ on in situ monitoring and catalyzing of chemical reactions and provides a new methodology to fabricate singlemolecule devices.
基金supported by the National Natural Science Foundation of China(grant nos.21875279,22075080,and 52273176)the Shanghai Municipal Science and Technology Major Project(grant no.2018SHZDZX03)the Fundamental Research Funds for the Central Universities,and East China University of Science and Technology.
文摘Electrical switching of a single-molecule junction provides a practical module to perform sophisticated operations in electronic devices.However,designing an all-electrically-driven molecular switch is a great challenge.Here,we experimentally and theoretically investigated the charge transport characteristics of isoindigo(ISO)-molecules at the single-molecule level using the scanning tunneling microscope break junction technique.We find that the single-molecule junctions of ISO-molecules display bias voltage-driven switching characteristics.These switches are realtime,reversible,and nondestructive under low-bias voltages.Experimental results show that the mechanism of the switch is not the transition from nonresonant charge transport to resonant charge transport,but it is the shift of the frontier orbital energy levels of ISO-molecules and the change of the interfacial electronic coupling with bias voltage.Our results will advance the design of high-performance bias voltage-driven molecular switches.
基金supported by the National Natural Science Foundation of China (Nos. 41175018, 41475113)the special fund of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (No. LAPC-KF-2014-01)
文摘Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m^3, respectively,throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM(organic matter = 1.6 × OC(organic carbon)) and SIA(secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca^2+were major components in coarse particles. Moreover, secondary components, mainly SOA(secondary organic aerosol) and SIA,accounted for 46%-96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of(NH4)2SO4, NH4NO3, Ca SO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons.
基金funded by the Key-Area Research and Development Program of Guangdong Province (2019B020219002)the Characteristic Innovation Project of Ordinary University of Guangdong Province (2019KTSCX018)+1 种基金the Guangdong Natural Science Funds for Distinguished Young Scholar (2014A030306005)the Guangdong Basic and Applied Basic Research Foundation (2019A1515110929),China.
文摘A microelectrode glucose biosensor based on a three-dimensional hybrid nanoporous platinum/graphene oxide nanostructure was developed for rapid glucose detection of tomato and cucumber fruits.The nanostructure was fabricated by a two-step modification method on a microelectrode for loading a larger amount of glucose oxidase.The nanoporous structure was prepared on the surface of the platinum microelectrode by electrochemical etching,and then graphene oxide was deposited on the prepared nanoporous electrode by electrochemical deposition.The nanoporous platinum/graphene oxide nanostructure had the advantage of improving the effective surface area of the electrode and the loading quantity of glucose oxidase.As a result,the biosensor achieved a wide range of 0.1-20.0 mmol/L in glucose detection,which had the ability to accurately detect the glucose content.It was found that the three-dimensional hybrid nanostructure on the electrode surface realized the rapid direct electrochemistry of glucose oxidase.Therefore,the biosensor achieved high glucose detection sensitivity 11.64μA·L/(mmol.cm^(2)),low detection limit(13μmol/L)and rapid response time(reaching 95%steady-state response within 3 s),when calibrating in glucose standard solution.In agricultural application,the as-prepared biosensor was employed to detect the glucose concentration of tomato and cucumber samples.The results showed that the relative deviation of this method was less than 5%when compared with that of high-performance liquid chromatography,implying high accuracy of the presented biosensor in glucose detection in plants.