A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-fo...A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-forward equal-izer(FFE)is employed in the quarter-rate transmitter(TX).The half-rate receiver(RX)incorporates a continuous-time linear equal-izer(CTLE),a 3-stage high-speed slicer with multi-clock-phase sampling,and a clock and data recovery(CDR).The experimen-tal results show that the TRx operates at a maximum speed of 56 Gb/s with chip-on board(COB)assembly.The 28 Gb/s NRZ eye diagram shows a far-end vertical eye opening of 210 mV with an output amplitude of 351 mV single-ended and the 56 Gb/s PAM-4 eye diagram exhibits far-end eye opening of 33 mV(upper-eye),31 mV(mid-eye),and 28 mV(lower-eye)with an output amplitude of 353 mV single-ended.The recovered 14 GHz clock from the RX exhibits random jitter(RJ)of 469 fs and deterministic jitter(DJ)of 8.76 ps.The 875 Mb/s de-multiplexed data features 593 ps horizontal eye opening with 32.02 ps RJ,at bit-error rate(BER)of 10-5(0.53 UI).The power dissipation of TX and RX are 125 and 181.4 mW,respectively,from a 0.9-V sup-ply.展开更多
Electrochemical sensing provides a powerful technological means for the therapeutic drug monitoring of drug-resistant tuberculosis but requires a functionalized electrode to capture the analytes and catalyze their red...Electrochemical sensing provides a powerful technological means for the therapeutic drug monitoring of drug-resistant tuberculosis but requires a functionalized electrode to capture the analytes and catalyze their redox reactions.Herein,we construct a nickel-tannic acid supramolecular network(Ni-TA)on the surface of electrospun-derived C-CeO_(2) nanofiber for the sensitive and simultaneous detection of isoniazid(INZ)and hydrazine(HYD).Mechanistic investigations demonstrate that Ni-TA is electronegative and hydrophilic,thus facilitating an efficient mass and electron transfer.Ni-TA/C-CeO_(2) has higher adsorption rate constants(0.091 g mg^(-1)h^(-1)for INZ,and 0.062 g mg^(-1)h^(-1)for HYD)than native C-CeO_(2)(0.075 g mg^(-1)h^(-1)for INZ,and 0.047 g mg^(-1)h^(-1)for HYD).Moreover,Ni-TA/C-CeO_(2)(56Ω)has lower charge transfer resistances than C-CeO_(2)(417Ω).Ni-TA/C-CeO_(2) performs low detection limits and wide linearity ranges for INZ(0.012μmol/L and 0.1-400μmol/L,respectively)and HYD(0.008μmol/L and 0.015-1420μmol/L,respectively),coupled with high selectivity,cycle stability and reproducibility.This research demonstrated the promising applications of Ni-TA/C-CeO_(2) by analyzing human-collected plasma and urine samples.展开更多
Orthopedic and dental implantations under bacterial infection microenvironment face significant challenges in achieving high-quality bone-implant integration. Designing implant coatings that incorporate both immune de...Orthopedic and dental implantations under bacterial infection microenvironment face significant challenges in achieving high-quality bone-implant integration. Designing implant coatings that incorporate both immune defense and anti-inflammation is difficult in conventional single-functional coatings. We introduce a multifunctional nanointerface using a zinc finger-inspired peptide-metal-phenolic nanocoating, designed to enhance implant osseointegration under such conditions. Abaloparatide (ABL), a second-generation anabolic drug for treating osteoporosis, can be integrated into the design of a zinc-phenolic network constructed on the implant surface (ABL@ZnTA). Importantly, the phenolic-coordinated Zn2+ ions in ABL@ZnTA can act as zinc finger motif to co-stabilize the configuration of ABL through multiple molecular interactions, enabling high bioactivity, high loading capacity (1.36 times), and long-term release (>7 days) of ABL. Our results showed that ABL@ZnTA can modulate macrophage polarization from the pro-inflammatory M1 towards the anti-inflammatory M2 phenotype, promoting immune osteogenesis with increased OCN, ALP, and SOD 1 expression. Furthermore, the ABL@ZnTA significantly reduces inflammatory fibrous tissue encapsulation and enhances the long-term stability of the implants, indicated by enhanced binding strength (6 times) and functional connectivity (1.5−3 times) in the rat bone defect model infected by S. aureus. Overall, our research offers a nano-enabled synergistic strategy that balances infection defense and osteogenesis promotion in orthopedic and dental implantations.展开更多
DNAzyme machines play critical roles in the fields of cell imaging, disease diagnosis, and cancer therapy. However, the applications of DNAzyme machines are limited by the nucleases-induced degradation,non-specific bi...DNAzyme machines play critical roles in the fields of cell imaging, disease diagnosis, and cancer therapy. However, the applications of DNAzyme machines are limited by the nucleases-induced degradation,non-specific binding of proteins, and insufficient provision of cofactors. Herein, protected DNAzyme machines with different cofactor designs(referred to as Pro Ds) were nanoengineered by the construction of multifunctional metal-phenolic nanoshells to deactivate the interferential proteins, including nucleases and non-specific binding proteins. Moreover, the nanoshells not only facilitate the cellular internalization of Pro Ds but provide specific metal ions acting as cofactors of the designed DNAzymes. Cellular imaging results demonstrated that Pro Ds could effectively and simultaneously monitor multiple tumor-related micro RNAs in living cells. This facile and rapid strategy that encapsulates DNAzyme machines into the protective metal-phenolic nanoshells is anticipated to extend to a wide range of functional nucleic acidsbased biomedical applications.展开更多
Dynamic manipulation of enzymatic activity is a challenging task for applications in chemical and pharmaceutical industries due to the difficult modification and variable conformation of various enzymes.Here, we repor...Dynamic manipulation of enzymatic activity is a challenging task for applications in chemical and pharmaceutical industries due to the difficult modification and variable conformation of various enzymes.Here, we report a new strategy for reversible dynamic modulation of enzymatic activity by near-infrared light-induced photothermal conversion based on polyphenol-functionalized liquid metal nanodroplets(LM). The metal-phenolic nanocoating not only provides colloidal stability of LM nanodroplets but also generates nanointerfaces for the assembly of various enzymes on the LM nanodroplets. Upon near infrared(NIR) irradiation, the localized microenvironmental heating through photothermal effect of the LM nanodroplets allows tailoring the enzymatic activity without affecting the bulk temperature. A library of functional enzymes, including proteinase K, glucoamylase, glucose oxidase, and Bst DNA polymerase, is integrated to perform a reversible control and enhanced activities even after five times of cycles, demonstrating great potential in bacterial fermentation, bacteriostasis, and target gene amplification.展开更多
The oral and craniofacial region consists of various types of hard and soft tissues with the intricate organization.With the high prevalence of tissue defects in this specific region,it is highly desirable to enhance ...The oral and craniofacial region consists of various types of hard and soft tissues with the intricate organization.With the high prevalence of tissue defects in this specific region,it is highly desirable to enhance tissue regeneration through the development and use of engineered biomaterials.Collagen,the major component of tissue extracellular matrix,has come into the limelight in regenerative medicine.Although collagen has been widely used as an essential component in biomaterial engineering owing to its low immunogenicity,high biocompatibility,and convenient extraction procedures,there is a limited number of reviews on this specific clinic sector.The need for mechanical enhancement and functional engineering drives intensive efforts in collagen-based biomaterials concentrating on therapeutical outcomes and clinical translation in oral and craniofacial tissue regeneration.Herein,we highlighted the status quo of the design and applications of collagen-based biomaterials in oral and craniofacial tissue reconstruction.The discussion expanded on the inspiration from the leather tanning process on modifications of collagen-based biomaterials and the prospects of multi-tissue reconstruction in this particular dynamic microenvironment.The existing findings will lay a new foundation for the optimization of current collagen-based biomaterials for rebuilding oral and craniofacial tissues in the future.展开更多
基金supported by National Natural Science Foundation of China under Grant 62174132the Fundamental Research Funds for Central Universities under Grant xzy022022060.
文摘A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-forward equal-izer(FFE)is employed in the quarter-rate transmitter(TX).The half-rate receiver(RX)incorporates a continuous-time linear equal-izer(CTLE),a 3-stage high-speed slicer with multi-clock-phase sampling,and a clock and data recovery(CDR).The experimen-tal results show that the TRx operates at a maximum speed of 56 Gb/s with chip-on board(COB)assembly.The 28 Gb/s NRZ eye diagram shows a far-end vertical eye opening of 210 mV with an output amplitude of 351 mV single-ended and the 56 Gb/s PAM-4 eye diagram exhibits far-end eye opening of 33 mV(upper-eye),31 mV(mid-eye),and 28 mV(lower-eye)with an output amplitude of 353 mV single-ended.The recovered 14 GHz clock from the RX exhibits random jitter(RJ)of 469 fs and deterministic jitter(DJ)of 8.76 ps.The 875 Mb/s de-multiplexed data features 593 ps horizontal eye opening with 32.02 ps RJ,at bit-error rate(BER)of 10-5(0.53 UI).The power dissipation of TX and RX are 125 and 181.4 mW,respectively,from a 0.9-V sup-ply.
基金supported by Cooperative Education Program of the Ministry of Education,China(Nos.202101256027 and 202102070134)National Excellent Young Scientists Found(No.00308054A1045)+3 种基金National Key R&D Program of China(No.2022YFA0912800)National Natural Science Foundation of China(No.22178233)Talents Program of Sichuan Province,Double First Class University Plan of Sichuan University,State Key Laboratory of Polymer Materials Engineering(No.sklpme 2020-03-01)Sichuan Tianfu Emei Project(No.2022-EC02-00073-CG)。
文摘Electrochemical sensing provides a powerful technological means for the therapeutic drug monitoring of drug-resistant tuberculosis but requires a functionalized electrode to capture the analytes and catalyze their redox reactions.Herein,we construct a nickel-tannic acid supramolecular network(Ni-TA)on the surface of electrospun-derived C-CeO_(2) nanofiber for the sensitive and simultaneous detection of isoniazid(INZ)and hydrazine(HYD).Mechanistic investigations demonstrate that Ni-TA is electronegative and hydrophilic,thus facilitating an efficient mass and electron transfer.Ni-TA/C-CeO_(2) has higher adsorption rate constants(0.091 g mg^(-1)h^(-1)for INZ,and 0.062 g mg^(-1)h^(-1)for HYD)than native C-CeO_(2)(0.075 g mg^(-1)h^(-1)for INZ,and 0.047 g mg^(-1)h^(-1)for HYD).Moreover,Ni-TA/C-CeO_(2)(56Ω)has lower charge transfer resistances than C-CeO_(2)(417Ω).Ni-TA/C-CeO_(2) performs low detection limits and wide linearity ranges for INZ(0.012μmol/L and 0.1-400μmol/L,respectively)and HYD(0.008μmol/L and 0.015-1420μmol/L,respectively),coupled with high selectivity,cycle stability and reproducibility.This research demonstrated the promising applications of Ni-TA/C-CeO_(2) by analyzing human-collected plasma and urine samples.
基金National Natural Science Foundation of China(J.F.,Grant no.32000928)Sichuan Science and Technology Program(J.F.,Grant no.2023YFS0150)+8 种基金National Natural Science Foundation of China(Y.L.,Grant no.82270249)National Key R&D Program of China(J.G.,Grant No.2022YFA0912800)National Natural Science Foundation of China(J.G.,Grant No.22178233)National Excellent Young Scientist Fund(J.G.,Grant No.00308054A1045)Sichuan Tianfu Emei Project(J.G.,Grant No.2022-EC02-00073-CG)Talents Program of Sichuan Province(J.G.)Double First Class University Plan of Sichuan University(J.G.)State Key Laboratory of Polymer Materials Engineering(J.G.,Grant No.sklpme 2020-03-01)National Natural Science Foundation of China(Y.L.,Grant no.31971247,82371003).
文摘Orthopedic and dental implantations under bacterial infection microenvironment face significant challenges in achieving high-quality bone-implant integration. Designing implant coatings that incorporate both immune defense and anti-inflammation is difficult in conventional single-functional coatings. We introduce a multifunctional nanointerface using a zinc finger-inspired peptide-metal-phenolic nanocoating, designed to enhance implant osseointegration under such conditions. Abaloparatide (ABL), a second-generation anabolic drug for treating osteoporosis, can be integrated into the design of a zinc-phenolic network constructed on the implant surface (ABL@ZnTA). Importantly, the phenolic-coordinated Zn2+ ions in ABL@ZnTA can act as zinc finger motif to co-stabilize the configuration of ABL through multiple molecular interactions, enabling high bioactivity, high loading capacity (1.36 times), and long-term release (>7 days) of ABL. Our results showed that ABL@ZnTA can modulate macrophage polarization from the pro-inflammatory M1 towards the anti-inflammatory M2 phenotype, promoting immune osteogenesis with increased OCN, ALP, and SOD 1 expression. Furthermore, the ABL@ZnTA significantly reduces inflammatory fibrous tissue encapsulation and enhances the long-term stability of the implants, indicated by enhanced binding strength (6 times) and functional connectivity (1.5−3 times) in the rat bone defect model infected by S. aureus. Overall, our research offers a nano-enabled synergistic strategy that balances infection defense and osteogenesis promotion in orthopedic and dental implantations.
基金supported by National Talents Program,Double First Class University Plan of Sichuan University,State Key Laboratory of Polymer Materials Engineering(No.sklpme 2020-0301)Natural Science Foundation of Sichuan Province(Nos.2022NSFSC1735,2023NSFSC1097)+5 种基金Fundamental Research Funds for the Central Universities(No.ZYN2022094)National Natural Science Foundation of China(Nos.22178233,22208228)China Postdoctoral Science Foundation(No.2020TQ0209)Fundamental Research Funds for the Central Universities(No.YJ201959)Science and Technology Support Program of Sichuan Province(No.2021YJ0414)Project of Chengdu Science and Technology Bureau(No.2021YF05-02110-SN)。
文摘DNAzyme machines play critical roles in the fields of cell imaging, disease diagnosis, and cancer therapy. However, the applications of DNAzyme machines are limited by the nucleases-induced degradation,non-specific binding of proteins, and insufficient provision of cofactors. Herein, protected DNAzyme machines with different cofactor designs(referred to as Pro Ds) were nanoengineered by the construction of multifunctional metal-phenolic nanoshells to deactivate the interferential proteins, including nucleases and non-specific binding proteins. Moreover, the nanoshells not only facilitate the cellular internalization of Pro Ds but provide specific metal ions acting as cofactors of the designed DNAzymes. Cellular imaging results demonstrated that Pro Ds could effectively and simultaneously monitor multiple tumor-related micro RNAs in living cells. This facile and rapid strategy that encapsulates DNAzyme machines into the protective metal-phenolic nanoshells is anticipated to extend to a wide range of functional nucleic acidsbased biomedical applications.
基金financial support from the National Talents Program, National Natural Science Foundation of China (Nos. 22178233, 22108181)Talents Program of Sichuan Province, Double First-Class University Plan of Sichuan University, State Key Laboratory of Polymer Materials Engineering (No. sklpme 2020-03-01)the Sichuan Province Postdoctoral Special Funding。
文摘Dynamic manipulation of enzymatic activity is a challenging task for applications in chemical and pharmaceutical industries due to the difficult modification and variable conformation of various enzymes.Here, we report a new strategy for reversible dynamic modulation of enzymatic activity by near-infrared light-induced photothermal conversion based on polyphenol-functionalized liquid metal nanodroplets(LM). The metal-phenolic nanocoating not only provides colloidal stability of LM nanodroplets but also generates nanointerfaces for the assembly of various enzymes on the LM nanodroplets. Upon near infrared(NIR) irradiation, the localized microenvironmental heating through photothermal effect of the LM nanodroplets allows tailoring the enzymatic activity without affecting the bulk temperature. A library of functional enzymes, including proteinase K, glucoamylase, glucose oxidase, and Bst DNA polymerase, is integrated to perform a reversible control and enhanced activities even after five times of cycles, demonstrating great potential in bacterial fermentation, bacteriostasis, and target gene amplification.
基金supported by grants from National Natural Science Foundation of China(Grant No.22178233,32000928,22208228,32271416)Sichuan Science and Technology Program(Grant No.2022ZDZX0031,2023YFS0150)+1 种基金Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC1735,2023NSFSC1097)National Talents Program,Double First Class University Plan of Sichuan University,State Key Laboratory of Polymer Materials Engineering(Grant No.sklpme 2020-03-01).
文摘The oral and craniofacial region consists of various types of hard and soft tissues with the intricate organization.With the high prevalence of tissue defects in this specific region,it is highly desirable to enhance tissue regeneration through the development and use of engineered biomaterials.Collagen,the major component of tissue extracellular matrix,has come into the limelight in regenerative medicine.Although collagen has been widely used as an essential component in biomaterial engineering owing to its low immunogenicity,high biocompatibility,and convenient extraction procedures,there is a limited number of reviews on this specific clinic sector.The need for mechanical enhancement and functional engineering drives intensive efforts in collagen-based biomaterials concentrating on therapeutical outcomes and clinical translation in oral and craniofacial tissue regeneration.Herein,we highlighted the status quo of the design and applications of collagen-based biomaterials in oral and craniofacial tissue reconstruction.The discussion expanded on the inspiration from the leather tanning process on modifications of collagen-based biomaterials and the prospects of multi-tissue reconstruction in this particular dynamic microenvironment.The existing findings will lay a new foundation for the optimization of current collagen-based biomaterials for rebuilding oral and craniofacial tissues in the future.