The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystora...The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field.展开更多
The reported electrocaloric(EC)effect in ferroelectrics is poised for application in the next generation of solidstate refrigeration technology,exhibiting substantial developmental potential.This study introduces a no...The reported electrocaloric(EC)effect in ferroelectrics is poised for application in the next generation of solidstate refrigeration technology,exhibiting substantial developmental potential.This study introduces a novel and efficient EC effect strategy in(1-x)Pb(Lu_(1/2)Nb_(1/2))O_(3)-xPbTiO_(3)(PLN-xPT)ceramics for low electric-fielddriven devices.Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions,guiding subsequent experimental investigations.A comprehensive composition/temperature-driven phase evolution diagram is constructed,elucidating the sequential transformation from ferroelectric(FE)to antiferroelectric(AFE)and finally to paraelectric(PE)phases for x=0.10-0.18 components.Direct measurements of EC performance highlight x=0.16 as an outstanding performer,exhibiting remarkable properties,including an adiabatic temperature change(ΔT)of 3.03 K,EC strength(ΔT/ΔE)of 0.08 K cm kV-1,and a temperature span(Tspan)of 31℃.The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide Tspan.This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions,offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.展开更多
Due to the thermal depolarization effect,adequate piezoelectric performance with high operating temperature is regarded to be challenging to accomplish concurrently in piezoceramics for applications in specific piezoe...Due to the thermal depolarization effect,adequate piezoelectric performance with high operating temperature is regarded to be challenging to accomplish concurrently in piezoceramics for applications in specific piezoelectric devices.In this work,we synthesized(0.8−x)BiFeO_(3)-x PbTi_(3)-0.2Ba(Zr_(0.25)Ti_(0.75))O_(3)(abbreviated as BFO-x PT-BZT)ternary solid solutions with 0.15≤x≤0.30 by conventional solid-state reaction method.The MPB composition with a coexisting state of rhombohedral-tetragonal phases exhibits enhanced electromechanical properties,including Curie temperature of 380℃,large-signal equivalent piezoelectric coefficient d^(∗)_(33)of 395 pm V^(-1),small-signal piezoelectric coefficient d_(33)of 302 pC N^(-1),and electromechanical coupling factor k_(p)of 50.2%,which is comparable to commercial PZT-5A ceramics,indicating potential in high-temperature applications.Furthermore,in-situ X-ray diffraction(XRD)and piezoelectric force microscopic(PFM)techniques demonstrate that multiphase coexistence and complex nanodomains promote piezoelectric response via synergism.The x=0.24 composition exhibits the highest in-situ d_(33)of 577 pC N^(-1)and good temperature stability in 30−280℃,indicating that BZT-modified BFO-PT ceramics are promising candidates for high-temperature piezoelectric devices.展开更多
3Lead-free(BiasNaus)TiO_(3)(BNT)-based relaxor ferroelectric(RFE)ceramics have attracted a lot of atten-tion due to their high power density and rapid charge-discharge apabilities,as well as their potential applicatio...3Lead-free(BiasNaus)TiO_(3)(BNT)-based relaxor ferroelectric(RFE)ceramics have attracted a lot of atten-tion due to their high power density and rapid charge-discharge apabilities,as well as their potential application in pulse power capacitors.However,because of the desire for smaller electronic devices,their energy storage performance(ESP)should be enhanced even further.We describe a defect engineering strategy for enhancing the antiferroelectric-like RFE feature of BNT-based ceramics by unequal substi-tution of rare-earth La^(3+)in this paper.The ESP of La^(3+)-doped samples is raised by 25%with the same synthetic procedure and thidkness,due to an inrease in the critical electric field(E-field)and saturated E-field during polarization response,which is induced by a modifiation in the energy barrier between the lattice torsion.More impressively,an ultrahigh recoverable energy storage density Wrec of 8.58J/cm^(3)and a high energy storage efficiengyηof 945%are simultaneously attained in 3 at.%La^(3+)-substituted 0.6(Bi_(0.5)Na_(0.4)K_(0.1))_(1-1.5x)La_(x)TiO_(3)-0.4[2/3SrTiO_(3)-1/3Bi(Mg_(2/3)Ni_(1/3))O_(3)]RFE ceamics with good temperatue stability(W_(rec)=4.6±0.2 J/cm^(3)and higher n of 290%from 30℃to 120℃),frequency stability,and fatigue resistance.The significant inrease in ESP achieved through defect engineering not only proves the effectiveness of our strategy,but also presents a novel dielectric material with potential applications in pulse power apacitors.展开更多
Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions...Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.展开更多
In this work,we report the dielectric and ferroelectric properties of CuO-doped(1-x)[0.5573Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.4427PbTiO_(3)]-xBa(Zn_(1/3)Nb_(2/3))_(3)(PMNT-xBZN)relaxor ferrielectric ceramic samples with x=0....In this work,we report the dielectric and ferroelectric properties of CuO-doped(1-x)[0.5573Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.4427PbTiO_(3)]-xBa(Zn_(1/3)Nb_(2/3))_(3)(PMNT-xBZN)relaxor ferrielectric ceramic samples with x=0.1725,0.1925,02125 and 0.2325,which were fabricated by a conventional solid-state reaction method.By introducing the CuO into PMNT-xBZN,the sintering temperature of this system is drastically lowered from 1280℃to 1120℃.The second pyrochlore phase,which is often generated during sintering at high temperature,is also inhibited.Meanwhile,broad dielectric peaks with strong dielectric relaxation characteristics are observed from150℃to 100℃.Slim and slanted P-E hysteresis loops and purely electrostrictive strains with V-shape are obtained simultaneously in studied compositions from 30℃to 150℃.These results suggest that CuO could effectively lower the sintering temperature while maintaining the dielectric and ferroelectric properties of PMNT-xBZN relaxor ferroelectric ceramics.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51761145024)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-YB-441)the Youth Innovation Team of Shaanxi Universitiesthe Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices(AFMD-KFJJ-21203)The research was made possible by Russian Science Foundation(Project No.23-42-00116).
文摘The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field.
基金financially supported by the National Natural Science Foundation of China(Grant No.52261135548)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+2 种基金The research was made possible by Russian Science Foundation(Project No.23-42-00116)The equipment of the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)which is supported by the Ministry of ScienceHigher Education RF(Project No.075-15-2021-677)was used.
文摘The reported electrocaloric(EC)effect in ferroelectrics is poised for application in the next generation of solidstate refrigeration technology,exhibiting substantial developmental potential.This study introduces a novel and efficient EC effect strategy in(1-x)Pb(Lu_(1/2)Nb_(1/2))O_(3)-xPbTiO_(3)(PLN-xPT)ceramics for low electric-fielddriven devices.Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions,guiding subsequent experimental investigations.A comprehensive composition/temperature-driven phase evolution diagram is constructed,elucidating the sequential transformation from ferroelectric(FE)to antiferroelectric(AFE)and finally to paraelectric(PE)phases for x=0.10-0.18 components.Direct measurements of EC performance highlight x=0.16 as an outstanding performer,exhibiting remarkable properties,including an adiabatic temperature change(ΔT)of 3.03 K,EC strength(ΔT/ΔE)of 0.08 K cm kV-1,and a temperature span(Tspan)of 31℃.The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide Tspan.This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions,offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.
基金supported by the National Natu-ral Science Foundation of China(Grant No.52261135548)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and 2021YFB3800602)Russian Science Foundation(Project No.23-42-00116)The equipment of the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)the Ministry of Science and Higher Education RF(Project No.075-15-2021-677)was used.
文摘Due to the thermal depolarization effect,adequate piezoelectric performance with high operating temperature is regarded to be challenging to accomplish concurrently in piezoceramics for applications in specific piezoelectric devices.In this work,we synthesized(0.8−x)BiFeO_(3)-x PbTi_(3)-0.2Ba(Zr_(0.25)Ti_(0.75))O_(3)(abbreviated as BFO-x PT-BZT)ternary solid solutions with 0.15≤x≤0.30 by conventional solid-state reaction method.The MPB composition with a coexisting state of rhombohedral-tetragonal phases exhibits enhanced electromechanical properties,including Curie temperature of 380℃,large-signal equivalent piezoelectric coefficient d^(∗)_(33)of 395 pm V^(-1),small-signal piezoelectric coefficient d_(33)of 302 pC N^(-1),and electromechanical coupling factor k_(p)of 50.2%,which is comparable to commercial PZT-5A ceramics,indicating potential in high-temperature applications.Furthermore,in-situ X-ray diffraction(XRD)and piezoelectric force microscopic(PFM)techniques demonstrate that multiphase coexistence and complex nanodomains promote piezoelectric response via synergism.The x=0.24 composition exhibits the highest in-situ d_(33)of 577 pC N^(-1)and good temperature stability in 30−280℃,indicating that BZT-modified BFO-PT ceramics are promising candidates for high-temperature piezoelectric devices.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52172127)the National Key R&D Program of China(Grant Nos.2021YFE0115000 and SQ2021YFB380003202)the Fundamental Research Funds for the Central Universities(XJTU).The SEM work was done at International Center for Dielectric Research(ICDR),Xi’an Jiaotong University,Xi'an,China.
文摘3Lead-free(BiasNaus)TiO_(3)(BNT)-based relaxor ferroelectric(RFE)ceramics have attracted a lot of atten-tion due to their high power density and rapid charge-discharge apabilities,as well as their potential application in pulse power capacitors.However,because of the desire for smaller electronic devices,their energy storage performance(ESP)should be enhanced even further.We describe a defect engineering strategy for enhancing the antiferroelectric-like RFE feature of BNT-based ceramics by unequal substi-tution of rare-earth La^(3+)in this paper.The ESP of La^(3+)-doped samples is raised by 25%with the same synthetic procedure and thidkness,due to an inrease in the critical electric field(E-field)and saturated E-field during polarization response,which is induced by a modifiation in the energy barrier between the lattice torsion.More impressively,an ultrahigh recoverable energy storage density Wrec of 8.58J/cm^(3)and a high energy storage efficiengyηof 945%are simultaneously attained in 3 at.%La^(3+)-substituted 0.6(Bi_(0.5)Na_(0.4)K_(0.1))_(1-1.5x)La_(x)TiO_(3)-0.4[2/3SrTiO_(3)-1/3Bi(Mg_(2/3)Ni_(1/3))O_(3)]RFE ceamics with good temperatue stability(W_(rec)=4.6±0.2 J/cm^(3)and higher n of 290%from 30℃to 120℃),frequency stability,and fatigue resistance.The significant inrease in ESP achieved through defect engineering not only proves the effectiveness of our strategy,but also presents a novel dielectric material with potential applications in pulse power apacitors.
基金the National Natural Science Foundation of China(Grant No.52261135548)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and 2021YFB3800602)Russian Science Foundation(Project No.23-42-00116)the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)which is supported by the Ministry of Science and Higher Education RF(Project No.075-15-2021-677)was used.The SEM work was done at International Center for Dielectric Research(ICDR),Xi’an Jiaotong University,Xi’an,China.
文摘Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.
基金supported by the National Nature Science Foundation of China(Grant Nos.51772239,51761145024)the Fundamental Research Funds for the Central Universities(XJTU),the Key Scientific and Tech-nological Innovation Team of Shannxi Province(Grant No.2018TD-024)the“111”Project(Grant No.B14040).
文摘In this work,we report the dielectric and ferroelectric properties of CuO-doped(1-x)[0.5573Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.4427PbTiO_(3)]-xBa(Zn_(1/3)Nb_(2/3))_(3)(PMNT-xBZN)relaxor ferrielectric ceramic samples with x=0.1725,0.1925,02125 and 0.2325,which were fabricated by a conventional solid-state reaction method.By introducing the CuO into PMNT-xBZN,the sintering temperature of this system is drastically lowered from 1280℃to 1120℃.The second pyrochlore phase,which is often generated during sintering at high temperature,is also inhibited.Meanwhile,broad dielectric peaks with strong dielectric relaxation characteristics are observed from150℃to 100℃.Slim and slanted P-E hysteresis loops and purely electrostrictive strains with V-shape are obtained simultaneously in studied compositions from 30℃to 150℃.These results suggest that CuO could effectively lower the sintering temperature while maintaining the dielectric and ferroelectric properties of PMNT-xBZN relaxor ferroelectric ceramics.