Objective: Patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC) are often diagnosed with delay and constrained to limited treatment options. The correlation between RAI refractoriness an...Objective: Patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC) are often diagnosed with delay and constrained to limited treatment options. The correlation between RAI refractoriness and the underlying genetic characteristics has not been extensively studied.Methods: Adult patients with distant metastatic DTC were enrolled and assigned to undergo next-generation sequencing of a customized 26-gene panel(Thyro Lead). Patients were classified into RAIR-DTC or non-RAIR groups to determine the differences in clinicopathological and molecular characteristics. Molecular risk stratification(MRS) was constructed based on the association between molecular alterations identified and RAI refractoriness, and the results were classified as high, intermediate or low MRS.Results: A total of 220 patients with distant metastases were included, 63.2% of whom were identified as RAIRDTC. Genetic alterations were identified in 90% of all the patients, with BRAF(59.7% vs. 17.3%), TERT promoter(43.9% vs. 7.4%), and TP53 mutations(11.5% vs. 3.7%) being more prevalent in the RAIR-DTC group than in the non-RAIR group, except for RET fusions(15.8% vs. 39.5%), which had the opposite pattern. BRAF and TERT promoter are independent predictors of RAIR-DTC, accounting for 67.6% of patients with RAIR-DTC. MRS was strongly associated with RAI refractoriness(P<0.001), with an odds ratio(OR) of high to low MRS of 7.52 [95%confidence interval(95% CI), 3.96-14.28;P<0.001] and an OR of intermediate to low MRS of 3.20(95% CI,1.01-10.14;P=0.041).Conclusions: Molecular alterations were associated with RAI refractoriness, with BRAF and TERT promoter mutations being the predominant contributors, followed by TP53 and DICER1 mutations. MRS might serve as a valuable tool for both prognosticating clinical outcomes and directing precision-based therapeutic interventions.展开更多
Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains ch...Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains challenging for 2D catalytic ozonation membranes to efficiently degrade micropollutants due to low mass-transfer efficiency and poor catalytic activity.Herein,Fe/Mn bimetallic metaleorganic framework(MOF)intercalated lamellar MnO_(2) membranes with fast and robust ozone-catalyzed mass-transfer channels were developed on the surface of the hollow fiber ceramic membrane(HFCM)to obtain 2D Fe/Mn-MOF@MnO_(2)-HFCM for efficiently degrading micropollutants in wastewater.The intercalation of Fe/Mn-MOF expanded the interlayer spacing of the MnO_(2) membrane,thereby providing abundant transport channels for rapid passage of water.More notably,the Fe/Mn-MOF provided enriched reactive sites as well as high electron transfer efficiency based on the redox cycling between Mn3t/Mn4t and Fe^(2+)/Fe^(3+),ensuring the effective catalytic oxidative degradation of micropollutants including tetracycline hydrochloride(TCH),methylene blue,and methyl blue.Moreover,the carboxyl groups on the MOF formed covalent bonds(eCOOe)with the hydroxyl groups in MnO_(2) between layers,which increased the interaction between MnO_(2) nanosheets to form stable interlayer channels.Specifically,the optimal composite membrane achieved a high removal rate of TCH micropollutant(93.4%),high water treatment capacity(282 L·^(-2)·^(-1)·MPa^(-1)),and excellent longterm stability(1200 min).This study provides a simple and easily scalable strategy to construct fast,efficient,and stable 2D catalytic mass-transfer channels for the efficient treatment of micropollutants in wastewater.展开更多
Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxid...Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxidative radicals(e.g.OH)generated via the activation of H_(2)O_(2)by iron ions(Fe^(3+)),the short effective lifetime of membranes remains a challenge.Inorganic nano tin oxide(SnO_(2))has great potential for the removal of Fe^(3+)in strongly oxidative H_(2)O_(2)because of its ability to stabilize H2O_(2)and preferentially adsorb Fe^(3+).Herein,we have designed for the first time a flower-like robust SnO_(2)membrane on the ceramic support by in situ template-free one-step hydrothermal method.The three-dimensional loose pore structure in the membrane built by interlacing SnO_(2)nanosheets endows the SnO_(2)membrane with a high specific surface area and abundant adsorption sites(AOH).Based on the coordination complexation and electrostatic attraction between the SnO_(2)surface and Fe^(3+),the membrane shows a high Fe3+removal efficiency(83%)and permeability(24 L·m^(-2)·h^(-1)·MPa^(-1))in H_(2)O_(2).This study provides an innovative and simple approach to designing robust SnO_(2)membranes for highly efficient removal of Fe^(3+)in harsh environments,such as strong oxidation conditions.展开更多
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer...Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.展开更多
Thyroid cancer (TC) is the most common endocrine system cancer, of note, the overall survival of TC in China is suboptimal when comparing with the developed countries such as US (84.3%vs.98.3%), posing a great challen...Thyroid cancer (TC) is the most common endocrine system cancer, of note, the overall survival of TC in China is suboptimal when comparing with the developed countries such as US (84.3%vs.98.3%), posing a great challenge among professionals involved in this field.Standardization of its diagnosis and treatment not only provides the basis for all the care givers to promote the entire level of TC management, but also is helpful in shortening the distance between China and other developed countries. A multidisciplinary team (MDT)should be involved in the comprehensive clinical management of TC, particularly for those advanced or refractory TC, which needs cooperation among members from ultrasonography, radiology, pathology, surgery.展开更多
An experiment was conducted to investigate the effect of dietary pyridoxine on the gene expression of appetite-regulating peptides in the hypothalamus and gastrointestinal tract of rabbits. Thirty-two rabbits were ran...An experiment was conducted to investigate the effect of dietary pyridoxine on the gene expression of appetite-regulating peptides in the hypothalamus and gastrointestinal tract of rabbits. Thirty-two rabbits were randomly divided into 2 treatments for 8 weeks (16 replicates/group and 1 rabbit/replicate). The treatments were fed a basal diet (control, measured pyridoxine content is 4.51 mg/kg) and the basal diet with a pyridoxine supplementation at 10 mg/kg (pyridoxine, measured pyridoxine content is 14.64 mg/kg). The results showed that dietary pyridoxine did not significantly alter the mRNA levels of neuropeptide Y, agouti related peptide, pro-opiomelanocortin and cocaine, amphetamine regulated transcript, peptide YY and cholecystokinin in arcuate nucleus, peptide YY in jejunum and ileum, and cholecystokinin in duodenum, jejunum and ileum (P > 0.05). Compared with the control, the mRNA levels of corticotropin-releasing hormone and melanocortin 4 receptor in paraventricular nuclei and peptide YY in duodenum were significantly decreased after pyridoxine treatment (P 0.05). In conclusion, the appetite genes of melanocortin 4 receptor and corticotropin-releasing hormone in paraventricular nuclei and peptide YY in duodenum are involved in the pyridoxine-caused hyperphagia.展开更多
In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farml...In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farmland, the soil p H, total salt content,crop root length, root weight, soil organic matter, available nitrogen, total nitrogen, total phosphorous and total potassium in different fertilization treatments were measured from 2010 to 2016. Multiple comparisons of the data were performed using Duncan's new multiple range test. The results indicated that in the 0-20 cm soil layer, soil p H value and total salt content changed in different patterns, and varied greatly from 2010 to 2016(P<0.05). The changes of both root length and root weight of millet over time fitted S-shaped curves. The root length and root weight in the four fertilization treatments(Treatment 2 to Treatment5) increased faster than those in the control(Treatment 1). The soil organic matter content in all the five treatments gradually increased from 2010 to 2016. The content of alkaline hydrolyzable nitrogen in soil rapidly increased in the first two to three years of the experiment, followed by a slow increase or decrease in 2013, and then raised rapidly again from 2014 to 2016.The soil total nitrogen content varied significantly from 2010 to 2016. The total phosphorus content in soil changed in a different pattern from that of total nitrogen content. The seven-year field trails revealed that soil p H, total salt content, root length, root weight and soil nutrient all changed with the increase of fertilizer level, and that long-term fertilization is of significance for maintaining soil fertility, improving soil quality and reducing soil salinization.展开更多
Under the premise to protect the privacy of personal information,publishing valuable graph is a challenging issue in privacy research.Appling differential privacy in graph,most of the work focused on graph structure c...Under the premise to protect the privacy of personal information,publishing valuable graph is a challenging issue in privacy research.Appling differential privacy in graph,most of the work focused on graph structure characteristic values,because the basic of differential privacy is data distortion,it’s hard to get valuable composite graph if we add a large number of random noise into the raw data.In this article,we show the key that influence availability is whether the important data keep original value in a composite graph.We analysis the properties of important data of k triangle count,and provide a new method for synthesis graph publication.We show the application of this method in k triangle count,and the experimental results proved the accuracy of the method.展开更多
It remains an urgent task to develop alternative hole-transporting layer(HTL)materials beyond commonly used PEDOT:PSS to increase the shelf-life of organic solar cells(OSCs).Inorganic metal oxide type materials,such a...It remains an urgent task to develop alternative hole-transporting layer(HTL)materials beyond commonly used PEDOT:PSS to increase the shelf-life of organic solar cells(OSCs).Inorganic metal oxide type materials,such as NiO_(x),CoO_(x)and VO_(x),with suitable work functions have attracted numerous research attention recently.In this work,more abundant and easily accessible oxygenated salt,vanadyl sulfate(VOSO_(4))has been demonstrated to be excellent choice as HTL for OSCs.The VOSO_(4)-based HTL can be readily processed by spin-coating from the precursor solution with subsequent thermal annealing and UVO treatment.As a consequence,a high power conversion efficiency(PCE)of 18.72%can be achieved for PM8:L8-BO based OSCs with the VOSO_(4)-based HTL.High transmittance,smooth film surface,suitable energy level and high conductivity were revealed to contribute to the high OSC performance.More importantly,compared to device with PEDOT:PSS,VOSO_(4)-based OSCs exhibit improved stability when stored in the N_(2)filled glove box.After being stored for 600 h,VOSO_(4)-based device can retain 89%of its initial efficiency.Notably,VOSO_(4)can be used as general HTL in PM6:BTP-BO-4Cl and PM6:IT-4F based OSCs,yielding high PCEs of 17.87%and 13.85%,respectively.展开更多
Skatole,a strong fecal odor substance,is generated through microbial degradation of tryptophan in the animal hindgut.It easily accumulates in adipose tissue and affects meat quality.In this study,the effect of mulberr...Skatole,a strong fecal odor substance,is generated through microbial degradation of tryptophan in the animal hindgut.It easily accumulates in adipose tissue and affects meat quality.In this study,the effect of mulberry leaf supplementation on skatole in finishing pigs was studied.In a 35-day trial,20 finishing pigs(barrows and gilts)were fed with a basal diet or basal diet with 6%mulberry leaves.Growth performance of the pigs(n=10)was automatically recorded by a performance-testing feeder system and 8 pigs in each treatment were slaughtered and sampled for the remaining tests.Skatole and short-chain fatty acids were detected using HPLC and gas chromatography,respectively.Fecal microbiota were analyzed using 16S r RNA gene sequencing.The metabolomics analysis of feces and serum was performed with UHPLC-MS/MS.The major cytochrome P450(CYP)enzymes that catalyze skatole degradation in the liver were tested by using RT-PCR and Western blot.Effects of major bioactive compounds in mulberry leaves on the CYP genes were verified in the hepatic cell line Hep G2 in an in vitro test(n=3).In finishing pigs,mulberry leaf supplementation had no significant effect on the average daily gain,average daily feed intake,and feed conversion ratio(P>0.05),but reduced skatole levels in feces,serum,and backfat(P<0.05),and increased acetic acid levels in feces(P=0.027).Mulberry leaf supplementation decreased the relative abundance of the skatole-producing bacteria Megasphaera and Olsenella(P<0.05).Indole-3acetic acid,the intermediate that is essential for skatole production,was significantly reduced in feces by mulberry leaf supplementation(P<0.05)and was positively correlated with skatole content in feces(P=0.004).In pigs treated with mulberry leaves,liver CYP1A1 expression was increased(P<0.05)and was negatively correlated with skatole content in backfat(P=0.045).The in vitro test demonstrated that mulberry leaf polyphenols and polysaccharides could directly stimulate CYP1A1 expression in hepatic cells.These findings suggest that mulberry leaf supplementation reduces skatole production and deposition in finishing pigs by regulating the gut microbiota and promoting skatole degradation in liver.展开更多
Liquid biopsy used molecular information in body liquid to perform early diagnosis,screening,monitoring,prognosis,and treatment of various diseases.Circulating free nucleic acids(cfNA)are important diagnostic biomarke...Liquid biopsy used molecular information in body liquid to perform early diagnosis,screening,monitoring,prognosis,and treatment of various diseases.Circulating free nucleic acids(cfNA)are important diagnostic biomarkers,providing a window to accurately and immediately observe the body's vital activity status.With the development of gene sequencing technology and bioinformatics technology,genetic,epigenetic,and fragtomics alterations that can be detected in cfDNA,as well as the expression level of miRNA and cf-mRNA can be quantified,this can reflect its tissue origin,gene regulation,genome evolution,and disease pathogenesis.This review focuses on the clinical utility of cfNA in different body liquids(blood,urine,bile),and discusses the diagnostic efficacy and accuracy of cfNA as diagnostic biomarkers in a variety of diseases.Blood is widely used to diagnose various tissue lesions for liquid biopsies as a body fluid circulating throughout the body,reflecting the state of the entire body.Bile and urine,as local circulating body fluids,can better reflect the changing state of tissues around the biliary tract and tissues around the bladder,respectively.In addition,normalized sample preservation,cfNA extraction,and detection procedures will help the practical application of cfNA in the clinic.展开更多
It was documented that arbuscular mycorrhiza fungi(AMF) play an important role in protecting host plants against arsenic(As) contamination. However, most terrestrial ecosystems contain a considerable number of non...It was documented that arbuscular mycorrhiza fungi(AMF) play an important role in protecting host plants against arsenic(As) contamination. However, most terrestrial ecosystems contain a considerable number of nonmycorrhizal plants. So far little information is available for the interaction of such non-host plants with AMF under As contaminations. By using a dual compartment cultivation system with a plastic board or a nylon mesh separating roots of non-host pepperweed from roots of the AM-host alfafa plants, avoiding direct root competition, the two plant species were grown separately or partially separated(with rhizosphere effects) in the presence or absence of the AMF Rhizophagus irregularis in As-contaminated soil. The results indicated that mycorrhiza caused phosphorus(P) concentration decrease in the non-host pepperweed, but promoted the P concentration of the AM host alfafa. Mycorrhiza is potentially helpful for non-host pepperweed to adapt to As contamination by decreasing root As concentration and showing no suppressing effect on biomass production. The study provides further evidence for the protective effects of AMF on non-host plants against As contamination, and improved our understanding of the potential role of AMF for non-host plant adaptation to As contaminated soils.展开更多
Arbuscular mycorrhizal fungi(AMF) can establish a mutualistic association with most terrestrial plants even in heavy metal contaminated environments. It has been documented that high concentrations of toxic metals, ...Arbuscular mycorrhizal fungi(AMF) can establish a mutualistic association with most terrestrial plants even in heavy metal contaminated environments. It has been documented that high concentrations of toxic metals, such as arsenic(As) in soil could adversely affect the diversity and function of AMF. However, there are still gaps in understanding the community composition of AMF under long-term As contaminations. In the present study, six sampling sites with different As concentrations were selected in the Realgar mining area in Hunan Province of China. The AMF biodiversity in the rhizosphere soils of the dominant plant species was investigated by sequencing the nuclear small subunit ribosomal RNA(SSU rR NA) gene fragments using 454-pyrosequencing technique. A total of 11 AMF genera were identified,namely Rhizophagus, Glomus, Funneliformis, Acaulospora, Diversispora, Claroideoglomus, Scutellopora,Gigaspora, Ambispora, Praglomus, and Archaeospora, among which Glomus, Rhizophagus, and Claroideoglomus clarodeum were detected in all sampling sites, and Glomus was the dominant AMF genus in the Realgar mining area. Redundancy analysis indicated that soil pH, total As and Cd concentrations were the main factors influencing AMF community structure. There was a negative correlation between the AMF species richness and the total As concentration in the soil,but no significant correlation between the Shannon–Wiener index of the AMF and plants. Our study showed that high As concentrations can exert a selective effect on the AMF populations.展开更多
Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity.However,its extensive industr...Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity.However,its extensive industrial application has been restricted by the low ozone utilization and limited mass transfer of the short-lived radical species.Interlayer space-confined catalysis has been theoretically proven to be a viable strategy for achieving high catalytic efficiency.Here,a two-dimensional MnO_(2)-incorporated ceramic membrane with tunable interspacing,which was obtained via the intercalation of a carbon nanotube,was designed as a catalytic ozonation membrane reactor for degrading methylene blue.Benefiting from the abundant catalytic active sites on the surface of two-dimensional MnO_(2) as well as the ultralow mass transfer resistance of fluids due to the nanolayer confinement,an excellent mineralization effect,i.e.,1.2 mg O_(3)(aq)mg^(-1) TOC removal(a total organic carbon removal rate of 71.5%),was achieved within a hydraulic retention time of 0.045 s of pollutant degradation.Further,the effects of hydraulic retention time and interlayer spacing on methylene blue removal were investigated.Moreover,the mechanism of the catalytic ozonation employing catalytic ozonation membrane was proposed based on the contribution of the Mn(III/IV)redox pair to electron transfer to generate the reactive oxygen species.This innovative twodimensional confinement catalytic ozonation membrane could act as a nanoreactor and separator to efficiently oxidize organic pollutants and enhance the control of membrane fouling during water purification.展开更多
基金supported by the Project on InterGovernmental International Scientific and Technological Innovation Cooperation in National Key Projects of Research and Development Plan (No. 2019YFE0106400)the National Natural Science Foundation of China (No. 81771875)。
文摘Objective: Patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC) are often diagnosed with delay and constrained to limited treatment options. The correlation between RAI refractoriness and the underlying genetic characteristics has not been extensively studied.Methods: Adult patients with distant metastatic DTC were enrolled and assigned to undergo next-generation sequencing of a customized 26-gene panel(Thyro Lead). Patients were classified into RAIR-DTC or non-RAIR groups to determine the differences in clinicopathological and molecular characteristics. Molecular risk stratification(MRS) was constructed based on the association between molecular alterations identified and RAI refractoriness, and the results were classified as high, intermediate or low MRS.Results: A total of 220 patients with distant metastases were included, 63.2% of whom were identified as RAIRDTC. Genetic alterations were identified in 90% of all the patients, with BRAF(59.7% vs. 17.3%), TERT promoter(43.9% vs. 7.4%), and TP53 mutations(11.5% vs. 3.7%) being more prevalent in the RAIR-DTC group than in the non-RAIR group, except for RET fusions(15.8% vs. 39.5%), which had the opposite pattern. BRAF and TERT promoter are independent predictors of RAIR-DTC, accounting for 67.6% of patients with RAIR-DTC. MRS was strongly associated with RAI refractoriness(P<0.001), with an odds ratio(OR) of high to low MRS of 7.52 [95%confidence interval(95% CI), 3.96-14.28;P<0.001] and an OR of intermediate to low MRS of 3.20(95% CI,1.01-10.14;P=0.041).Conclusions: Molecular alterations were associated with RAI refractoriness, with BRAF and TERT promoter mutations being the predominant contributors, followed by TP53 and DICER1 mutations. MRS might serve as a valuable tool for both prognosticating clinical outcomes and directing precision-based therapeutic interventions.
基金supported by the National Key Research and Development Program(2021YFB3801303)the National Natural Science Foundation of China(22408161,21921006)+1 种基金the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology(BE2022033-3)the State Key Laboratory of Materials-Oriented Chemical Engineering(SKL-MCE-22A03).
文摘Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains challenging for 2D catalytic ozonation membranes to efficiently degrade micropollutants due to low mass-transfer efficiency and poor catalytic activity.Herein,Fe/Mn bimetallic metaleorganic framework(MOF)intercalated lamellar MnO_(2) membranes with fast and robust ozone-catalyzed mass-transfer channels were developed on the surface of the hollow fiber ceramic membrane(HFCM)to obtain 2D Fe/Mn-MOF@MnO_(2)-HFCM for efficiently degrading micropollutants in wastewater.The intercalation of Fe/Mn-MOF expanded the interlayer spacing of the MnO_(2) membrane,thereby providing abundant transport channels for rapid passage of water.More notably,the Fe/Mn-MOF provided enriched reactive sites as well as high electron transfer efficiency based on the redox cycling between Mn3t/Mn4t and Fe^(2+)/Fe^(3+),ensuring the effective catalytic oxidative degradation of micropollutants including tetracycline hydrochloride(TCH),methylene blue,and methyl blue.Moreover,the carboxyl groups on the MOF formed covalent bonds(eCOOe)with the hydroxyl groups in MnO_(2) between layers,which increased the interaction between MnO_(2) nanosheets to form stable interlayer channels.Specifically,the optimal composite membrane achieved a high removal rate of TCH micropollutant(93.4%),high water treatment capacity(282 L·^(-2)·^(-1)·MPa^(-1)),and excellent longterm stability(1200 min).This study provides a simple and easily scalable strategy to construct fast,efficient,and stable 2D catalytic mass-transfer channels for the efficient treatment of micropollutants in wastewater.
基金support from the National Key Research and Development Program(2021YFB3801303)the National Natural Science Foundation of China(21838005,21921006)+1 种基金the State Key Laboratory of Materials-Oriented Chemical Engineering(SKL-MCE-22A03)the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology(BE2022033-3).
文摘Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxidative radicals(e.g.OH)generated via the activation of H_(2)O_(2)by iron ions(Fe^(3+)),the short effective lifetime of membranes remains a challenge.Inorganic nano tin oxide(SnO_(2))has great potential for the removal of Fe^(3+)in strongly oxidative H_(2)O_(2)because of its ability to stabilize H2O_(2)and preferentially adsorb Fe^(3+).Herein,we have designed for the first time a flower-like robust SnO_(2)membrane on the ceramic support by in situ template-free one-step hydrothermal method.The three-dimensional loose pore structure in the membrane built by interlacing SnO_(2)nanosheets endows the SnO_(2)membrane with a high specific surface area and abundant adsorption sites(AOH).Based on the coordination complexation and electrostatic attraction between the SnO_(2)surface and Fe^(3+),the membrane shows a high Fe3+removal efficiency(83%)and permeability(24 L·m^(-2)·h^(-1)·MPa^(-1))in H_(2)O_(2).This study provides an innovative and simple approach to designing robust SnO_(2)membranes for highly efficient removal of Fe^(3+)in harsh environments,such as strong oxidation conditions.
基金supported by the National Natural Science Foundation of China (Grant No. 52072267)Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems (Grant No. 23DZ2229029)
文摘Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.
文摘Thyroid cancer (TC) is the most common endocrine system cancer, of note, the overall survival of TC in China is suboptimal when comparing with the developed countries such as US (84.3%vs.98.3%), posing a great challenge among professionals involved in this field.Standardization of its diagnosis and treatment not only provides the basis for all the care givers to promote the entire level of TC management, but also is helpful in shortening the distance between China and other developed countries. A multidisciplinary team (MDT)should be involved in the comprehensive clinical management of TC, particularly for those advanced or refractory TC, which needs cooperation among members from ultrasonography, radiology, pathology, surgery.
文摘An experiment was conducted to investigate the effect of dietary pyridoxine on the gene expression of appetite-regulating peptides in the hypothalamus and gastrointestinal tract of rabbits. Thirty-two rabbits were randomly divided into 2 treatments for 8 weeks (16 replicates/group and 1 rabbit/replicate). The treatments were fed a basal diet (control, measured pyridoxine content is 4.51 mg/kg) and the basal diet with a pyridoxine supplementation at 10 mg/kg (pyridoxine, measured pyridoxine content is 14.64 mg/kg). The results showed that dietary pyridoxine did not significantly alter the mRNA levels of neuropeptide Y, agouti related peptide, pro-opiomelanocortin and cocaine, amphetamine regulated transcript, peptide YY and cholecystokinin in arcuate nucleus, peptide YY in jejunum and ileum, and cholecystokinin in duodenum, jejunum and ileum (P > 0.05). Compared with the control, the mRNA levels of corticotropin-releasing hormone and melanocortin 4 receptor in paraventricular nuclei and peptide YY in duodenum were significantly decreased after pyridoxine treatment (P 0.05). In conclusion, the appetite genes of melanocortin 4 receptor and corticotropin-releasing hormone in paraventricular nuclei and peptide YY in duodenum are involved in the pyridoxine-caused hyperphagia.
基金Supported by National Grain and Sorghum Industry Technical System(CARS-06-13.5-A18)Program for the Integrated Development of the Primary,Secondary and Tertiary Sectors in Rural Area of Ningxia(YES-06-08)
文摘In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farmland, the soil p H, total salt content,crop root length, root weight, soil organic matter, available nitrogen, total nitrogen, total phosphorous and total potassium in different fertilization treatments were measured from 2010 to 2016. Multiple comparisons of the data were performed using Duncan's new multiple range test. The results indicated that in the 0-20 cm soil layer, soil p H value and total salt content changed in different patterns, and varied greatly from 2010 to 2016(P<0.05). The changes of both root length and root weight of millet over time fitted S-shaped curves. The root length and root weight in the four fertilization treatments(Treatment 2 to Treatment5) increased faster than those in the control(Treatment 1). The soil organic matter content in all the five treatments gradually increased from 2010 to 2016. The content of alkaline hydrolyzable nitrogen in soil rapidly increased in the first two to three years of the experiment, followed by a slow increase or decrease in 2013, and then raised rapidly again from 2014 to 2016.The soil total nitrogen content varied significantly from 2010 to 2016. The total phosphorus content in soil changed in a different pattern from that of total nitrogen content. The seven-year field trails revealed that soil p H, total salt content, root length, root weight and soil nutrient all changed with the increase of fertilizer level, and that long-term fertilization is of significance for maintaining soil fertility, improving soil quality and reducing soil salinization.
文摘Under the premise to protect the privacy of personal information,publishing valuable graph is a challenging issue in privacy research.Appling differential privacy in graph,most of the work focused on graph structure characteristic values,because the basic of differential privacy is data distortion,it’s hard to get valuable composite graph if we add a large number of random noise into the raw data.In this article,we show the key that influence availability is whether the important data keep original value in a composite graph.We analysis the properties of important data of k triangle count,and provide a new method for synthesis graph publication.We show the application of this method in k triangle count,and the experimental results proved the accuracy of the method.
基金supported by NSFC(52163018,52073016,92163128)Jiangxi Provincial Department of Science and Technology(No.20212BCJ23035)+1 种基金Jiangxi Academy of Sciences(2023YJC1001,2023YSBG22025,2022YRCS002)the Hong Kong scholar program(XJ2022019)。
文摘It remains an urgent task to develop alternative hole-transporting layer(HTL)materials beyond commonly used PEDOT:PSS to increase the shelf-life of organic solar cells(OSCs).Inorganic metal oxide type materials,such as NiO_(x),CoO_(x)and VO_(x),with suitable work functions have attracted numerous research attention recently.In this work,more abundant and easily accessible oxygenated salt,vanadyl sulfate(VOSO_(4))has been demonstrated to be excellent choice as HTL for OSCs.The VOSO_(4)-based HTL can be readily processed by spin-coating from the precursor solution with subsequent thermal annealing and UVO treatment.As a consequence,a high power conversion efficiency(PCE)of 18.72%can be achieved for PM8:L8-BO based OSCs with the VOSO_(4)-based HTL.High transmittance,smooth film surface,suitable energy level and high conductivity were revealed to contribute to the high OSC performance.More importantly,compared to device with PEDOT:PSS,VOSO_(4)-based OSCs exhibit improved stability when stored in the N_(2)filled glove box.After being stored for 600 h,VOSO_(4)-based device can retain 89%of its initial efficiency.Notably,VOSO_(4)can be used as general HTL in PM6:BTP-BO-4Cl and PM6:IT-4F based OSCs,yielding high PCEs of 17.87%and 13.85%,respectively.
文摘Skatole,a strong fecal odor substance,is generated through microbial degradation of tryptophan in the animal hindgut.It easily accumulates in adipose tissue and affects meat quality.In this study,the effect of mulberry leaf supplementation on skatole in finishing pigs was studied.In a 35-day trial,20 finishing pigs(barrows and gilts)were fed with a basal diet or basal diet with 6%mulberry leaves.Growth performance of the pigs(n=10)was automatically recorded by a performance-testing feeder system and 8 pigs in each treatment were slaughtered and sampled for the remaining tests.Skatole and short-chain fatty acids were detected using HPLC and gas chromatography,respectively.Fecal microbiota were analyzed using 16S r RNA gene sequencing.The metabolomics analysis of feces and serum was performed with UHPLC-MS/MS.The major cytochrome P450(CYP)enzymes that catalyze skatole degradation in the liver were tested by using RT-PCR and Western blot.Effects of major bioactive compounds in mulberry leaves on the CYP genes were verified in the hepatic cell line Hep G2 in an in vitro test(n=3).In finishing pigs,mulberry leaf supplementation had no significant effect on the average daily gain,average daily feed intake,and feed conversion ratio(P>0.05),but reduced skatole levels in feces,serum,and backfat(P<0.05),and increased acetic acid levels in feces(P=0.027).Mulberry leaf supplementation decreased the relative abundance of the skatole-producing bacteria Megasphaera and Olsenella(P<0.05).Indole-3acetic acid,the intermediate that is essential for skatole production,was significantly reduced in feces by mulberry leaf supplementation(P<0.05)and was positively correlated with skatole content in feces(P=0.004).In pigs treated with mulberry leaves,liver CYP1A1 expression was increased(P<0.05)and was negatively correlated with skatole content in backfat(P=0.045).The in vitro test demonstrated that mulberry leaf polyphenols and polysaccharides could directly stimulate CYP1A1 expression in hepatic cells.These findings suggest that mulberry leaf supplementation reduces skatole production and deposition in finishing pigs by regulating the gut microbiota and promoting skatole degradation in liver.
基金supported by the National Natural Science Foundation of China(92153303,21721005,91940000 to X.Z)the National Science Foundation for Young Scientists of China(21907078 to S.P.)。
文摘Liquid biopsy used molecular information in body liquid to perform early diagnosis,screening,monitoring,prognosis,and treatment of various diseases.Circulating free nucleic acids(cfNA)are important diagnostic biomarkers,providing a window to accurately and immediately observe the body's vital activity status.With the development of gene sequencing technology and bioinformatics technology,genetic,epigenetic,and fragtomics alterations that can be detected in cfDNA,as well as the expression level of miRNA and cf-mRNA can be quantified,this can reflect its tissue origin,gene regulation,genome evolution,and disease pathogenesis.This review focuses on the clinical utility of cfNA in different body liquids(blood,urine,bile),and discusses the diagnostic efficacy and accuracy of cfNA as diagnostic biomarkers in a variety of diseases.Blood is widely used to diagnose various tissue lesions for liquid biopsies as a body fluid circulating throughout the body,reflecting the state of the entire body.Bile and urine,as local circulating body fluids,can better reflect the changing state of tissues around the biliary tract and tissues around the bladder,respectively.In addition,normalized sample preservation,cfNA extraction,and detection procedures will help the practical application of cfNA in the clinic.
基金supported by the National Natural Science Foundation of China(Nos.41471219,21677164)the project of“Research on Migration/Transformation and Safety Threshold of Heavy Metals in Farmland Systems”the National Key Research and Development Program of China(No.2016YFD0800400)
文摘It was documented that arbuscular mycorrhiza fungi(AMF) play an important role in protecting host plants against arsenic(As) contamination. However, most terrestrial ecosystems contain a considerable number of nonmycorrhizal plants. So far little information is available for the interaction of such non-host plants with AMF under As contaminations. By using a dual compartment cultivation system with a plastic board or a nylon mesh separating roots of non-host pepperweed from roots of the AM-host alfafa plants, avoiding direct root competition, the two plant species were grown separately or partially separated(with rhizosphere effects) in the presence or absence of the AMF Rhizophagus irregularis in As-contaminated soil. The results indicated that mycorrhiza caused phosphorus(P) concentration decrease in the non-host pepperweed, but promoted the P concentration of the AM host alfafa. Mycorrhiza is potentially helpful for non-host pepperweed to adapt to As contamination by decreasing root As concentration and showing no suppressing effect on biomass production. The study provides further evidence for the protective effects of AMF on non-host plants against As contamination, and improved our understanding of the potential role of AMF for non-host plant adaptation to As contaminated soils.
基金supported by the National Natural Science Foundation of China (Nos. 41101246, 41471219)the National Key Technology R&D Program of China (No. 2012BAC25B03)
文摘Arbuscular mycorrhizal fungi(AMF) can establish a mutualistic association with most terrestrial plants even in heavy metal contaminated environments. It has been documented that high concentrations of toxic metals, such as arsenic(As) in soil could adversely affect the diversity and function of AMF. However, there are still gaps in understanding the community composition of AMF under long-term As contaminations. In the present study, six sampling sites with different As concentrations were selected in the Realgar mining area in Hunan Province of China. The AMF biodiversity in the rhizosphere soils of the dominant plant species was investigated by sequencing the nuclear small subunit ribosomal RNA(SSU rR NA) gene fragments using 454-pyrosequencing technique. A total of 11 AMF genera were identified,namely Rhizophagus, Glomus, Funneliformis, Acaulospora, Diversispora, Claroideoglomus, Scutellopora,Gigaspora, Ambispora, Praglomus, and Archaeospora, among which Glomus, Rhizophagus, and Claroideoglomus clarodeum were detected in all sampling sites, and Glomus was the dominant AMF genus in the Realgar mining area. Redundancy analysis indicated that soil pH, total As and Cd concentrations were the main factors influencing AMF community structure. There was a negative correlation between the AMF species richness and the total As concentration in the soil,but no significant correlation between the Shannon–Wiener index of the AMF and plants. Our study showed that high As concentrations can exert a selective effect on the AMF populations.
基金supported by the National Natural Science Foundation of China(Grant Nos.21838005 and 21676139)the Key Scientific Research and Development Projects of Jiangsu Province(Grant No.BE201800901)。
文摘Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity.However,its extensive industrial application has been restricted by the low ozone utilization and limited mass transfer of the short-lived radical species.Interlayer space-confined catalysis has been theoretically proven to be a viable strategy for achieving high catalytic efficiency.Here,a two-dimensional MnO_(2)-incorporated ceramic membrane with tunable interspacing,which was obtained via the intercalation of a carbon nanotube,was designed as a catalytic ozonation membrane reactor for degrading methylene blue.Benefiting from the abundant catalytic active sites on the surface of two-dimensional MnO_(2) as well as the ultralow mass transfer resistance of fluids due to the nanolayer confinement,an excellent mineralization effect,i.e.,1.2 mg O_(3)(aq)mg^(-1) TOC removal(a total organic carbon removal rate of 71.5%),was achieved within a hydraulic retention time of 0.045 s of pollutant degradation.Further,the effects of hydraulic retention time and interlayer spacing on methylene blue removal were investigated.Moreover,the mechanism of the catalytic ozonation employing catalytic ozonation membrane was proposed based on the contribution of the Mn(III/IV)redox pair to electron transfer to generate the reactive oxygen species.This innovative twodimensional confinement catalytic ozonation membrane could act as a nanoreactor and separator to efficiently oxidize organic pollutants and enhance the control of membrane fouling during water purification.