With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image t...With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.展开更多
In order to support advanced vehicular Internet-of-Things(IoT)applications,information exchanges among different vehicles are required to find efficient solutions for catering to different application requirements in ...In order to support advanced vehicular Internet-of-Things(IoT)applications,information exchanges among different vehicles are required to find efficient solutions for catering to different application requirements in complex and dynamic vehicular environments.Federated learning(FL),which is a type of distributed learning technology,has been attracting great interest in recent years as it performs knowledge exchange among different network entities without a violation of user privacy.However,client selection and networking scheme for enabling FL in dynamic vehicular environments,which determines the communication delay between FL clients and the central server that aggregates the models received from the clients,is still under-explored.In this paper,we propose an edge computing-based joint client selection and networking scheme for vehicular IoT.The proposed scheme assigns some vehicles as edge vehicles by employing a distributed approach,and uses the edge vehicles as FL clients to conduct the training of local models,which learns optimal behaviors based on the interaction with environments.The clients also work as forwarder nodes in information sharing among network entities.The client selection takes into account the vehicle velocity,vehicle distribution,and the wireless link connectivity between vehicles using a fuzzy logic algorithm,resulting in an efficient learning and networking architecture.We use computer simulations to evaluate the proposed scheme in terms of the communication overhead and the information covered in learning.展开更多
基金supported in part by collaborative research with Toyota Motor Corporation,in part by ROIS NII Open Collaborative Research under Grant 21S0601,in part by JSPS KAKENHI under Grants 20H00592,21H03424.
文摘With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.
基金This research was supported in part by the National Natural Science Foundation of China under Grant No.62062031 and 61877053in part by Inner Mongolia natural science foundation grant number 2019MS06035,and Inner Mongolia Science and Technology Major Project,China+1 种基金in part by ROIS NII Open Collaborative Research 21S0601in part by JSPS KAKENHI grant numbers 18KK0279,19H04093,20H00592,and 21H03424.
文摘In order to support advanced vehicular Internet-of-Things(IoT)applications,information exchanges among different vehicles are required to find efficient solutions for catering to different application requirements in complex and dynamic vehicular environments.Federated learning(FL),which is a type of distributed learning technology,has been attracting great interest in recent years as it performs knowledge exchange among different network entities without a violation of user privacy.However,client selection and networking scheme for enabling FL in dynamic vehicular environments,which determines the communication delay between FL clients and the central server that aggregates the models received from the clients,is still under-explored.In this paper,we propose an edge computing-based joint client selection and networking scheme for vehicular IoT.The proposed scheme assigns some vehicles as edge vehicles by employing a distributed approach,and uses the edge vehicles as FL clients to conduct the training of local models,which learns optimal behaviors based on the interaction with environments.The clients also work as forwarder nodes in information sharing among network entities.The client selection takes into account the vehicle velocity,vehicle distribution,and the wireless link connectivity between vehicles using a fuzzy logic algorithm,resulting in an efficient learning and networking architecture.We use computer simulations to evaluate the proposed scheme in terms of the communication overhead and the information covered in learning.