期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Semantic segmentation-based semantic communication system for image transmission
1
作者 jiale Wu Celimuge Wu +4 位作者 Yangfei Lin Tsutomu Yoshinaga Lei Zhong Xianfu Chen yusheng ji 《Digital Communications and Networks》 SCIE CSCD 2024年第3期519-527,共9页
With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image t... With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics. 展开更多
关键词 Semantic Communication Semantic segmentation Image transmission Image compression Deep learning
下载PDF
Edge Computing-Based Joint Client Selection and Networking Scheme for Federated Learning in Vehicular IoT 被引量:6
2
作者 Wugedele Bao Celimuge Wu +3 位作者 Siri Guleng jiefang Zhang Kok-Lim Alvin Yau yusheng ji 《China Communications》 SCIE CSCD 2021年第6期39-52,共14页
In order to support advanced vehicular Internet-of-Things(IoT)applications,information exchanges among different vehicles are required to find efficient solutions for catering to different application requirements in ... In order to support advanced vehicular Internet-of-Things(IoT)applications,information exchanges among different vehicles are required to find efficient solutions for catering to different application requirements in complex and dynamic vehicular environments.Federated learning(FL),which is a type of distributed learning technology,has been attracting great interest in recent years as it performs knowledge exchange among different network entities without a violation of user privacy.However,client selection and networking scheme for enabling FL in dynamic vehicular environments,which determines the communication delay between FL clients and the central server that aggregates the models received from the clients,is still under-explored.In this paper,we propose an edge computing-based joint client selection and networking scheme for vehicular IoT.The proposed scheme assigns some vehicles as edge vehicles by employing a distributed approach,and uses the edge vehicles as FL clients to conduct the training of local models,which learns optimal behaviors based on the interaction with environments.The clients also work as forwarder nodes in information sharing among network entities.The client selection takes into account the vehicle velocity,vehicle distribution,and the wireless link connectivity between vehicles using a fuzzy logic algorithm,resulting in an efficient learning and networking architecture.We use computer simulations to evaluate the proposed scheme in terms of the communication overhead and the information covered in learning. 展开更多
关键词 vehicular IoT federated learning client selection networking scheme
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部