The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi...NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future.展开更多
Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s ...Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.展开更多
The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindric...The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results revealed the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% higher than radial shrinkage for a cylindrical capsule with the size of ∮50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from0.47 to 0.75 with the capsule thickness increasing from 2 to 4 mm. The pressure transmission is related to the capsule thickness, the capsule material performance, and physical parameters in the HIP process.展开更多
Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phas...Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).展开更多
Three-dimensional(3D)-printed magnetic soft architectures have attracted extensive attention and research from the engineering and material fields.The force-driven shape deformation of such architectures causes a chan...Three-dimensional(3D)-printed magnetic soft architectures have attracted extensive attention and research from the engineering and material fields.The force-driven shape deformation of such architectures causes a change in the magnetic field distribution,indicating the capability to convert mechanical energy to electricity.Herein,we fabricate a flexible superhydrophobic and magnetic device by integrating two kinds of 3D printing approaches.The 3D-printed magnetic device(3DMD)exhibits a long-term stable mechanoelectrical conversion capacity under consecutive water droplet dripping.The output current of the 3DMD is higher than that of records in the existing literature.Combined with Maxwell numerical simulation,the mechanoelectrical conversion mechanism of the 3DMD is investigated,further guiding regulation of the diverse parameters.Moreover,three 3DMDs are integrated to light up a commercial light-emitting diode(LED)by a stream of collected rainwater.Such a combined design incorporating energy conversion is believed to promisingly motive advances in the 3D printing field.展开更多
Metamaterials have been receiving an increasing amount of interest in recent years. As a type of metamaterial, pentamode materials (PMs) approximate the elastic properties of liquids. In this study, a finite-element a...Metamaterials have been receiving an increasing amount of interest in recent years. As a type of metamaterial, pentamode materials (PMs) approximate the elastic properties of liquids. In this study, a finite-element analysis was conducted to predict the mechanical properties of PM structures by altering the thin wall thicknesses and layer numbers to obtain an outstanding load-bearing capacity. It was found that as the thin wall thickness increased from 0.15 to 0.45 mm, the compressive modulus of the PM structures increased and the Poisson’s ratio decreased. As the layer number increased, the Poisson’s ratio of the PM structures increased rapidly and reaches a stable value ranging from 0.50 to 0.55. Simulation results of the stress distribution in the PM structures confirmed that stress concentrations exist at the junctions of the thin walls and weights. For validation, Ti–6Al–4V specimens were fabricated by selective laser melting (SLM), and the mechanical properties of these specimens (i.e., Poisson’s ratio and elastic modulus) were experimentally studied. Good consistency was achieved between the numerical and experimental results. This work is beneficial for the design and development of PM structures with simultaneous load-bearing capacity and pentamodal properties.展开更多
Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited sour...Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can he used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient's damaged tissue, hut can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to he achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.展开更多
Recent reports on the selective laser melting(SLM)process under a vacuum or low ambient pressure have shown fewer defects and better surface quality of the as-printed products.Although the physical process of SLM in a...Recent reports on the selective laser melting(SLM)process under a vacuum or low ambient pressure have shown fewer defects and better surface quality of the as-printed products.Although the physical process of SLM in a vacuum has been investigated by high-speed imaging,the underlying mechanisms governing the heat transfer and molten flow are still not well understood.Herein,we first developed a mesoscopic model of SLM under variable ambient pressure based on our recent laser-welding studies.We simulated the transport phenomena of SLM 316L stainless steel powders under atmospheric and 100 Pa ambient pressure.For typical process parameters(laser power:200W;scanning speed:2m∙s^(-1);powder diameter:27 lm),the average surface temperature of the cavity approached 2800 K under atmospheric pressure,while it came close to 2300 K under 100 Pa pressure.More vigorous fluid flow(average speed:4m∙s^(-1))was observed under 100 Pa ambient pressure,because the pressure difference between the evaporation-induced surface pressure and the ambient pressure was relatively larger and drives the flow under lower pressure.It was also shown that there are periodical ripple flows(period:14ls)affecting the surface roughness of the as-printed track.Moreover,the molten flow was shown to be laminar because the Reynolds number is less than 400 and is far below the critical value of turbulence;thus,the viscous dissipation is significant.It was demonstrated that under a vacuum or lower ambient pressure,the ripple flow can be dissipated more easily by the viscous effect because the trajectory length of the ripple is longer;thus,the surface quality of the tracks is improved.To summarize,our model elucidates the physical mechanisms of the interesting transport phenomena that have been observed in independent experimental studies of the SLM process under variable ambient pressure,which could be a powerful tool for optimizing the SLM process in the future.展开更多
Kear Editor,Individuals in isolated,confined,and extreme environments,such as astronauts,researchers wintering over Antarctica,submarine soldiers,and participants in simulated isolation environment experiments,commonl...Kear Editor,Individuals in isolated,confined,and extreme environments,such as astronauts,researchers wintering over Antarctica,submarine soldiers,and participants in simulated isolation environment experiments,commonly report difficulty in focusing their attention[1,2].However,current experimental findings from studies conducted in such environments are insufficient to fully support these self-reports of reduced attention.Certain attention-demanding tasks such as simple reaction time(RT)tasks and dual tasks,including primary pursuit tracking and secondary RT,were not affected in space flight experiments[2,3].展开更多
Achieving a homogeneous equiaxed grain structure and breaking the strength–ductility trade-off in additively manufactured aluminum alloys is a great challenge.In this paper,we propose a novel duplex nucleation mechan...Achieving a homogeneous equiaxed grain structure and breaking the strength–ductility trade-off in additively manufactured aluminum alloys is a great challenge.In this paper,we propose a novel duplex nucleation mechanism that combines ex situ TiB_(2) and in situ Al_(3)Ti for controlling the grain structure of additively manufactured AlCuMgTi-TiB_(2) composites.We conducted thermodynamic calculations and phase-field simulations to elucidate the duplex nucleation-based grain structure control.The Al_(3)Ti-coated TiB_(2) inoculant system formed via duplex nucleation during solidification enabled the formation of a ho-mogeneous ultrafine equiaxed microstructure in both the as-fabricated and heat-treated states.Different from the AlCuMgTi alloy,the TiB_(2)-reinforced AlCuMgTi composites produced via laser powder bed fusion were amenable to the simultaneous enhancement of strength and ductility.The proposed alloy design approach and duplex nucleation mechanism can guide the tailoring of the microstructure and mechanical properties of additively manufactured aluminum parts.展开更多
The porous metallic biomaterials have attracted significant attention for implants because their lower young's modulus matches the human bones, which can eliminate the stress shielding effect and facilitate the gr...The porous metallic biomaterials have attracted significant attention for implants because their lower young's modulus matches the human bones, which can eliminate the stress shielding effect and facilitate the growth of bone tissue cells. The porous metallic biomaterials fabricated by selective laser melting (SLM) have broad prospects, but the surface of the SLM-built porous structure has been severely adhered with unmelted powders, which affects the forming accuracy and surface quality. The porous metallic biomaterials face the corrosion problem of complex body fluid environments during service, so their corrosion resistance in the human body is extremely important. The surface quality will affect the corrosion resistance of the porous metallic biomaterials. Therefore, it is necessary to study the effect of post-treatment on the corrosion resistance of SLMed samples. In this work, the mechanical response and the electrochemical corrosion behavior in simulated body fluid of diamond and pentamode metamaterials Ti-6Al-4V alloy fabricated by SLM before and after sandblasting were studied. After sandblasting, the mechanical properties of the two porous metallic biomaterials were slightly improved, and the self-corrosion potential and pitting potential were more negative;meanwhile, the self-corrosion current density and passive current density increased, indicating that its corrosion performance decreased, and the passive film stability of sandblasted samples got worse.展开更多
Light-weight,high-strength metamaterials with excellent specific energy absorption(SEA)capabilities are sig-nificant for aerospace and automobile.The SEA of metamaterials largely depends on the material and structural...Light-weight,high-strength metamaterials with excellent specific energy absorption(SEA)capabilities are sig-nificant for aerospace and automobile.The SEA of metamaterials largely depends on the material and structural design.Herein,inspired by the superior impact resistance of pomelo peel for protecting the pulp and the elevated SEA ability of a functionally graded structure,a graded bionic polyhedron metamaterial(GBPM)was designed and realized by 3D printing using a soft material(photosensitive resin)and a hard material(Ti-6Al-4V).Guided by compression tests and numerical simulations,the elevated SEA ability was independent of the materials.The fluctuation region appeared in hard-material-fabricated bionic polyhedron metamaterial(BPMs)and was absent in soft-material-fabricated BPMs in the stress-strain curves,resulting in the growth rate of the SEA value of the soft-material-fabricated GBPM being enhanced by 5.9 times compared with that of the hard-material-fabricated GBPM.The SEA values of soft-and hard-material-fabricated GBPM were 1.89 and 44.16 J/g,which exceed those of most soft-and hard-material-fabricated metamaterials reported in previous studies.These findings can guide the design of metamaterials with high energy absorption to resist external impacts.展开更多
The geometry of the phase interface in co-continuous piezoelectric composites is critical in improving their piezo-electric properties.However,conventional co-continuous piezoelectric composites are mostly simple stru...The geometry of the phase interface in co-continuous piezoelectric composites is critical in improving their piezo-electric properties.However,conventional co-continuous piezoelectric composites are mostly simple structures such as wood stacks or honeycombs,which are prone to stress concentrations at the joints,thus reducing the fatigue service performance and force-electric conversion efficiency of piezoelectric composites.Such simple structures limit further improvements in the overall performance of co-continuous piezoelectric composites.In this study,based on the digital light processing 3D printing method,we investigated the influence of three dif-ferent structures-the gyroid,diamond,and woodpile interfaces-on the piezoelectric and mechanical properties of co-continuous ceramic/polymer piezoelectric composites.These findings demonstrate that the gyroid and di-amond interfaces outperformed the ceramic skeleton of the woodpile interface in terms of both mechanical and electrical properties.When the ceramic volume percentage was 50%,the piezo-composite of the gyroid surface exhibited the greatest hydrostatic figure of merit(HFOM),reaching 4.23×10^(−12) Pa^(−1),and its piezoelectric coeffi-cient(d_(33))and relative dielectric constant(εr)reached 115 pC/N and 748,respectively.The research results lay the foundation for the application of co-continuous piezoelectric composites in underwater communication and detection.展开更多
The high porosity and interconnectivity of scaffolds are critical for nutrient transmission in bone tis-sue engineering but usually lead to poor mechanical properties.Herein,a novel method that combines acid etching(A...The high porosity and interconnectivity of scaffolds are critical for nutrient transmission in bone tis-sue engineering but usually lead to poor mechanical properties.Herein,a novel method that combines acid etching(AE)with selective laser sintering(SLS)and reaction bonding(RB)of Al particles is pro-posed to realize highly improved porosity,interconnectivity,mechanical strength,and in vitro bioactivity in 3D Al_(2)O_(3) scaffolds.By controlling the oxidation and etching behaviors of Al particles,a tunable hol-low spherical feature can be obtained,which brings about the distinction in compressive response and fracture path.The prevention of microcrack propagation on the in situ formed hollow spheres results in unique near elastic buckling rather than traditional brittle fracture,allowing an unparalleled compressive strength of 3.72±0.17 MPa at a high porosity of 87.7%±0.4%and pore interconnectivity of 94.7%±0.4%.Furthermore,scaffolds with an optimized pore structure and superhydrophilic surface show excellent cell proliferation and adhesion properties.Our findings offer a promising strategy for the coexistence of out-standing mechanical and biological properties,with great potential for tissue engineering applications.展开更多
This work systematically studied the effect of volumetric energy density E on the densification,mi-crostructures,tensile mechanical properties,and shape memory performance of a Fe-Mn-Si-Cr-Ni shape memory alloy(SMA)fa...This work systematically studied the effect of volumetric energy density E on the densification,mi-crostructures,tensile mechanical properties,and shape memory performance of a Fe-Mn-Si-Cr-Ni shape memory alloy(SMA)fabricated by laser powder bed fusion(L-PBF).An E of 90-265 J/mm3 is suggested to fabricate the Fe-Mn-Si-Cr-Ni SMA with minor metallurgical defects and a high relative density of above 99%.The increase in E can promote the formation of the primaryγaustenite and the solid phase trans-formation from the primaryδferrite to theγaustenite,which helps to achieve a nearly complete y austenitic microstructure.The increase in E also contributes to fabricating the Fe-Mn-Si-Cr-Ni SMA with superior comprehensive mechanical properties and shape memory performance by L-PBF.The Fe-Mn-Si-Cr-Ni SMA with a combination of good ductility of around 30%,high yield strength of above 480 MPa,an ultrahigh ultimate tensile strength of above 1 GPa,and large recovery strain of about 6%was manu-factured by L-PBF under a high E of 222-250 J/mm^(3).The good shape memory effect,excellent compre-hensive mechanical properties,and low cost of Fe-Mn-Si-Cr-Ni SMAs,as well as the outstanding ability to fabricate complex structures of L-PBF technology,provide a solid foundation for the design and fabri-cation of novel intelligent structures.展开更多
Biomimetic metallic biomaterials prepared for bone scaffolds have drawn more and more attention in recent years.However,the topological design of scaffolds is critical to cater to multi-physical requirements for effic...Biomimetic metallic biomaterials prepared for bone scaffolds have drawn more and more attention in recent years.However,the topological design of scaffolds is critical to cater to multi-physical requirements for efficient cell seeding and bone regeneration,yet remains a big scientific challenge owing to the coupling of mechanical and mass-transport properties in conventional scaffolds that lead to poor control towards favorable modulus and permeability combinations.Herein,inspired by the microstructure of natural sea urchin spines,biomimetic scaffolds constructed by pentamode metamaterials(PMs)with hierarchical structural tunability were additively manufactured via selective laser melting.The mechanical and mass-transport properties of scaffolds could be simultaneously tuned by the graded porosity(B/T ratio)and the tapering level(D/d ratio).Compared with traditional metallic biomaterials,our biomimetic PM scaffolds possess graded pore distribution,suitable strength,and significant improvements to cell seeding efficiency,permeability,and impact-tolerant capacity,and they also promote in vivo osteogenesis,indicating promising application for cell proliferation and bone regeneration using a structural innovation.展开更多
Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural m...Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural materials, is well known for high specific strength and good corrosion resistance. But the poor laser formability of aluminum alloy restricts its application. There are problems such as limited processable materials, immature process conditions and metallurgical defects on SLM processing aluminum alloys. Some efforts have been made to solve the above problems. This paper discusses the current research status both related to the scientific understanding and technology applications. The paper begins with a brief introduction of basic concepts of aluminum alloys and technology characterization of laser selective melting. In addition, solidification theory of SLM process and formation mechanism of metallurgical defects are discussed. Then, the current research status of microstructure, properties and heat treatment of SLM processing aluminum alloys is systematically reviewed respectively. Lastly, a future outlook is given at the end of this review paper.展开更多
The influence of the microstructure on mechanical properties of AlSi10Mg fabricated by casting and selective laser melting(SLM)were investigated and contrasted in this work,with an emphasis on understanding the formin...The influence of the microstructure on mechanical properties of AlSi10Mg fabricated by casting and selective laser melting(SLM)were investigated and contrasted in this work,with an emphasis on understanding the forming mechanism.The microstructure,phase structure and mechanical properties were characterized by scanning electron microscopy/field-emission Transmission Electron Microscopy(SEM/TEM),X-Ray Diffraction(XRD),tensile and fatigue tests.The results indicated that the SLM AlSi10Mg exhibited a supersaturated Si network structure precipitated alongα-Al cell.Brittleβ-Al5FeSi andπ-Al8FeMg3Si6 phases were found in the as-cast and SLM AlSi10Mg respectively due to different thermal histories during processing.The SLM AlSi10Mg showed higher tensile strength but lower elongation than the casting,as the result of grain refinement and tortuous crack path.The fatigue results revealed that unmelted powder,oxide inclusion and pores can considerably degrade the fatigue properties for the SLM AlSi10Mg.The SLM process offered a new method for material processing that would avoid harmful Fe-bearing intermetallic compounds and refine the microstructures for enhancing strength.展开更多
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
基金sponsored by the Natural and Science Foundation of China(Grant No.52275331)the Key-Area Research and Development Program of Guangdong Province(No.2020B090923001)+3 种基金the Key Research and Development Program of Hubei Province(No.2022BAA011)the Academic Frontier Youth Team(2018QYTD04)at Huazhong University of Science and Technology(HUST)the Hong Kong Scholars Program(No.XJ2022014)the Laboratory Project of Science and Technology on Power Beam Processes Laboratory。
文摘NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future.
基金supported by grants from the National Natural Science Foundation of China(52205363)Fundamental Research Funds for the Central Universities(2019kfyRCPY044 and 2021GCRC002)+3 种基金Program for HUST Academic Frontier Youth Team(2018QYTD04)Program for Innovative Research Team of the Ministry of Education(IRT1244)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Guangdong Provincial Department of Science and Technology(Key-Area Research and Development Program of Guangdong Province)under the Grant 2020B090923002。
文摘Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.
基金financially supported by Guangdong Province Key Field R&D Program, China (No. 2019B01 0935001)the National Nature Science Foundation of China (No. 51905192)the Fundamental Research Funds for the Central Universities (No. FRT-TP-20-006A2)
文摘The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results revealed the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% higher than radial shrinkage for a cylindrical capsule with the size of ∮50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from0.47 to 0.75 with the capsule thickness increasing from 2 to 4 mm. The pressure transmission is related to the capsule thickness, the capsule material performance, and physical parameters in the HIP process.
基金sponsored by the Natural Science Foundation of China (Grant nos. 51775208)the Hubei Science Fund for Distinguished Young Scholars (No. 0216110085)+2 种基金the National Key Research and Development Program “Additive Manufacturing and Laser Manufacturing”(No. 2016YFB1100101)Wuhan Morning Light Plan of Youth Science and Technology (No. 0216110066)the Academic frontier youth team at Huazhong University of Science and Technology (HUST)
文摘Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).
基金supported by initiatory financial support from Huazhong University of Science and Technology(HUST)the Monash University Postgraduate Publications Award。
文摘Three-dimensional(3D)-printed magnetic soft architectures have attracted extensive attention and research from the engineering and material fields.The force-driven shape deformation of such architectures causes a change in the magnetic field distribution,indicating the capability to convert mechanical energy to electricity.Herein,we fabricate a flexible superhydrophobic and magnetic device by integrating two kinds of 3D printing approaches.The 3D-printed magnetic device(3DMD)exhibits a long-term stable mechanoelectrical conversion capacity under consecutive water droplet dripping.The output current of the 3DMD is higher than that of records in the existing literature.Combined with Maxwell numerical simulation,the mechanoelectrical conversion mechanism of the 3DMD is investigated,further guiding regulation of the diverse parameters.Moreover,three 3DMDs are integrated to light up a commercial light-emitting diode(LED)by a stream of collected rainwater.Such a combined design incorporating energy conversion is believed to promisingly motive advances in the 3D printing field.
文摘Metamaterials have been receiving an increasing amount of interest in recent years. As a type of metamaterial, pentamode materials (PMs) approximate the elastic properties of liquids. In this study, a finite-element analysis was conducted to predict the mechanical properties of PM structures by altering the thin wall thicknesses and layer numbers to obtain an outstanding load-bearing capacity. It was found that as the thin wall thickness increased from 0.15 to 0.45 mm, the compressive modulus of the PM structures increased and the Poisson’s ratio decreased. As the layer number increased, the Poisson’s ratio of the PM structures increased rapidly and reaches a stable value ranging from 0.50 to 0.55. Simulation results of the stress distribution in the PM structures confirmed that stress concentrations exist at the junctions of the thin walls and weights. For validation, Ti–6Al–4V specimens were fabricated by selective laser melting (SLM), and the mechanical properties of these specimens (i.e., Poisson’s ratio and elastic modulus) were experimentally studied. Good consistency was achieved between the numerical and experimental results. This work is beneficial for the design and development of PM structures with simultaneous load-bearing capacity and pentamodal properties.
文摘Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can he used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient's damaged tissue, hut can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to he achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.
基金This research was supported by the National Science Fund for Excellent Young Scholars(52022033)the National Key Research and Development Program of China(2017YFE0100100 and 2018YFB1105300)+1 种基金was partially supported by the Government of Perm Krai(S-26/794)the Russian Foundation for Basic Research(16-48-590208).
文摘Recent reports on the selective laser melting(SLM)process under a vacuum or low ambient pressure have shown fewer defects and better surface quality of the as-printed products.Although the physical process of SLM in a vacuum has been investigated by high-speed imaging,the underlying mechanisms governing the heat transfer and molten flow are still not well understood.Herein,we first developed a mesoscopic model of SLM under variable ambient pressure based on our recent laser-welding studies.We simulated the transport phenomena of SLM 316L stainless steel powders under atmospheric and 100 Pa ambient pressure.For typical process parameters(laser power:200W;scanning speed:2m∙s^(-1);powder diameter:27 lm),the average surface temperature of the cavity approached 2800 K under atmospheric pressure,while it came close to 2300 K under 100 Pa pressure.More vigorous fluid flow(average speed:4m∙s^(-1))was observed under 100 Pa ambient pressure,because the pressure difference between the evaporation-induced surface pressure and the ambient pressure was relatively larger and drives the flow under lower pressure.It was also shown that there are periodical ripple flows(period:14ls)affecting the surface roughness of the as-printed track.Moreover,the molten flow was shown to be laminar because the Reynolds number is less than 400 and is far below the critical value of turbulence;thus,the viscous dissipation is significant.It was demonstrated that under a vacuum or lower ambient pressure,the ripple flow can be dissipated more easily by the viscous effect because the trajectory length of the ripple is longer;thus,the surface quality of the tracks is improved.To summarize,our model elucidates the physical mechanisms of the interesting transport phenomena that have been observed in independent experimental studies of the SLM process under variable ambient pressure,which could be a powerful tool for optimizing the SLM process in the future.
文摘Kear Editor,Individuals in isolated,confined,and extreme environments,such as astronauts,researchers wintering over Antarctica,submarine soldiers,and participants in simulated isolation environment experiments,commonly report difficulty in focusing their attention[1,2].However,current experimental findings from studies conducted in such environments are insufficient to fully support these self-reports of reduced attention.Certain attention-demanding tasks such as simple reaction time(RT)tasks and dual tasks,including primary pursuit tracking and secondary RT,were not affected in space flight experiments[2,3].
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52275331 and 52205358)the China Postdoctoral Science Foundation(No.2021M701293)+4 种基金the State Key Laboratory of Powder Metallurgy(Central South University,Changsha,China)the State Key Laboratory of Advanced Welding and Joining(Harbin Institute of Technology,Harbin,China)the Key-Area Research and Development Program of Guangdong Province(No.2020B090923001)the Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(No.HZQB-KCZYB-2020030)the Academic Frontier Youth Team(No.2018QYTD04)at the Huazhong University of Science and Technology.
文摘Achieving a homogeneous equiaxed grain structure and breaking the strength–ductility trade-off in additively manufactured aluminum alloys is a great challenge.In this paper,we propose a novel duplex nucleation mechanism that combines ex situ TiB_(2) and in situ Al_(3)Ti for controlling the grain structure of additively manufactured AlCuMgTi-TiB_(2) composites.We conducted thermodynamic calculations and phase-field simulations to elucidate the duplex nucleation-based grain structure control.The Al_(3)Ti-coated TiB_(2) inoculant system formed via duplex nucleation during solidification enabled the formation of a ho-mogeneous ultrafine equiaxed microstructure in both the as-fabricated and heat-treated states.Different from the AlCuMgTi alloy,the TiB_(2)-reinforced AlCuMgTi composites produced via laser powder bed fusion were amenable to the simultaneous enhancement of strength and ductility.The proposed alloy design approach and duplex nucleation mechanism can guide the tailoring of the microstructure and mechanical properties of additively manufactured aluminum parts.
基金supported by the Joint Program of the National Natural Science Foundation of China(U1808216)the National Natural Science Foundation of China(Grant No.52275331)+2 种基金the Key Research and Development Program of Hubei Province(No.2022BAA011)the Academic Frontier Youth Team(2018QYTD04)at Huazhong University of Science and Technology(HUST)the Laboratory Project of Science and Technology on Power Beam Processes Laboratory and the Hong Kong Scholars Program(No.XJ2022014).
文摘The porous metallic biomaterials have attracted significant attention for implants because their lower young's modulus matches the human bones, which can eliminate the stress shielding effect and facilitate the growth of bone tissue cells. The porous metallic biomaterials fabricated by selective laser melting (SLM) have broad prospects, but the surface of the SLM-built porous structure has been severely adhered with unmelted powders, which affects the forming accuracy and surface quality. The porous metallic biomaterials face the corrosion problem of complex body fluid environments during service, so their corrosion resistance in the human body is extremely important. The surface quality will affect the corrosion resistance of the porous metallic biomaterials. Therefore, it is necessary to study the effect of post-treatment on the corrosion resistance of SLMed samples. In this work, the mechanical response and the electrochemical corrosion behavior in simulated body fluid of diamond and pentamode metamaterials Ti-6Al-4V alloy fabricated by SLM before and after sandblasting were studied. After sandblasting, the mechanical properties of the two porous metallic biomaterials were slightly improved, and the self-corrosion potential and pitting potential were more negative;meanwhile, the self-corrosion current density and passive current density increased, indicating that its corrosion performance decreased, and the passive film stability of sandblasted samples got worse.
基金supported by Guangdong Provincial Key-Area Research and Development Program of China(Grant No.2020B090923001)National Natural Science Foundation of China(Grant Nos.51922044,52205358)Central Universities Funda-mental Research Funds of China(Grant No.HUST:2022JYCXJJ021).
文摘Light-weight,high-strength metamaterials with excellent specific energy absorption(SEA)capabilities are sig-nificant for aerospace and automobile.The SEA of metamaterials largely depends on the material and structural design.Herein,inspired by the superior impact resistance of pomelo peel for protecting the pulp and the elevated SEA ability of a functionally graded structure,a graded bionic polyhedron metamaterial(GBPM)was designed and realized by 3D printing using a soft material(photosensitive resin)and a hard material(Ti-6Al-4V).Guided by compression tests and numerical simulations,the elevated SEA ability was independent of the materials.The fluctuation region appeared in hard-material-fabricated bionic polyhedron metamaterial(BPMs)and was absent in soft-material-fabricated BPMs in the stress-strain curves,resulting in the growth rate of the SEA value of the soft-material-fabricated GBPM being enhanced by 5.9 times compared with that of the hard-material-fabricated GBPM.The SEA values of soft-and hard-material-fabricated GBPM were 1.89 and 44.16 J/g,which exceed those of most soft-and hard-material-fabricated metamaterials reported in previous studies.These findings can guide the design of metamaterials with high energy absorption to resist external impacts.
基金supported by National Key Research and Develop-ment Plan of China(Grant.No.2021YFB3703100)National Natural Science Foundation of China(Grant.No.52202066)+3 种基金Joint Fund of Min-istry of China Education for Pre-Research of Equipment(Grant.No.8091B032105)Hubei High Value Patent Cultivation Project of China(Grant.No.2021pm0012)Wuhan Knowledge Innovation Project-Dawn Plan‘JD’Technology Research Project in Hubei Province of China(2023BAA023).
文摘The geometry of the phase interface in co-continuous piezoelectric composites is critical in improving their piezo-electric properties.However,conventional co-continuous piezoelectric composites are mostly simple structures such as wood stacks or honeycombs,which are prone to stress concentrations at the joints,thus reducing the fatigue service performance and force-electric conversion efficiency of piezoelectric composites.Such simple structures limit further improvements in the overall performance of co-continuous piezoelectric composites.In this study,based on the digital light processing 3D printing method,we investigated the influence of three dif-ferent structures-the gyroid,diamond,and woodpile interfaces-on the piezoelectric and mechanical properties of co-continuous ceramic/polymer piezoelectric composites.These findings demonstrate that the gyroid and di-amond interfaces outperformed the ceramic skeleton of the woodpile interface in terms of both mechanical and electrical properties.When the ceramic volume percentage was 50%,the piezo-composite of the gyroid surface exhibited the greatest hydrostatic figure of merit(HFOM),reaching 4.23×10^(−12) Pa^(−1),and its piezoelectric coeffi-cient(d_(33))and relative dielectric constant(εr)reached 115 pC/N and 748,respectively.The research results lay the foundation for the application of co-continuous piezoelectric composites in underwater communication and detection.
文摘The high porosity and interconnectivity of scaffolds are critical for nutrient transmission in bone tis-sue engineering but usually lead to poor mechanical properties.Herein,a novel method that combines acid etching(AE)with selective laser sintering(SLS)and reaction bonding(RB)of Al particles is pro-posed to realize highly improved porosity,interconnectivity,mechanical strength,and in vitro bioactivity in 3D Al_(2)O_(3) scaffolds.By controlling the oxidation and etching behaviors of Al particles,a tunable hol-low spherical feature can be obtained,which brings about the distinction in compressive response and fracture path.The prevention of microcrack propagation on the in situ formed hollow spheres results in unique near elastic buckling rather than traditional brittle fracture,allowing an unparalleled compressive strength of 3.72±0.17 MPa at a high porosity of 87.7%±0.4%and pore interconnectivity of 94.7%±0.4%.Furthermore,scaffolds with an optimized pore structure and superhydrophilic surface show excellent cell proliferation and adhesion properties.Our findings offer a promising strategy for the coexistence of out-standing mechanical and biological properties,with great potential for tissue engineering applications.
基金supported by the Chinese National Natural Science Fund (No.U1864208)the National Science and Technology Major Project (No.2017-VII-0011-0106)+8 种基金the Youth Science Fund Project of National Natural Science Foundation of China (No.52105396)the Postdoctoral Research Foundation of China (No.2020M682410)Postdoctoral Science and Technology Activity Program of Hubei Province (No.0106110134)the Project Supported by Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing (No.3DL202104)the Science and Technology Planning Project of Tianjin (No.20ZYJDJC00030)the Key Program of Research and Development of Hebei Province (No.202030507040009)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province (No.A2020202002)the Natural Science Foundation of Chongqing (No.cstc2021jcyj-msxmX0241)the Key Project of Natural Science Foundation of Tianjin (No.S20ZDF077).
文摘This work systematically studied the effect of volumetric energy density E on the densification,mi-crostructures,tensile mechanical properties,and shape memory performance of a Fe-Mn-Si-Cr-Ni shape memory alloy(SMA)fabricated by laser powder bed fusion(L-PBF).An E of 90-265 J/mm3 is suggested to fabricate the Fe-Mn-Si-Cr-Ni SMA with minor metallurgical defects and a high relative density of above 99%.The increase in E can promote the formation of the primaryγaustenite and the solid phase trans-formation from the primaryδferrite to theγaustenite,which helps to achieve a nearly complete y austenitic microstructure.The increase in E also contributes to fabricating the Fe-Mn-Si-Cr-Ni SMA with superior comprehensive mechanical properties and shape memory performance by L-PBF.The Fe-Mn-Si-Cr-Ni SMA with a combination of good ductility of around 30%,high yield strength of above 480 MPa,an ultrahigh ultimate tensile strength of above 1 GPa,and large recovery strain of about 6%was manu-factured by L-PBF under a high E of 222-250 J/mm^(3).The good shape memory effect,excellent compre-hensive mechanical properties,and low cost of Fe-Mn-Si-Cr-Ni SMAs,as well as the outstanding ability to fabricate complex structures of L-PBF technology,provide a solid foundation for the design and fabri-cation of novel intelligent structures.
基金This work was sponsored by the National Natural Science Foundation of China(Grant No.51922044)the Key Area Research and Development Program of Guangdong Province(No.2020B090923001)the Academic frontier youth team at Huazhong University of Science and Technology(HUST)(2018QYTD04).
文摘Biomimetic metallic biomaterials prepared for bone scaffolds have drawn more and more attention in recent years.However,the topological design of scaffolds is critical to cater to multi-physical requirements for efficient cell seeding and bone regeneration,yet remains a big scientific challenge owing to the coupling of mechanical and mass-transport properties in conventional scaffolds that lead to poor control towards favorable modulus and permeability combinations.Herein,inspired by the microstructure of natural sea urchin spines,biomimetic scaffolds constructed by pentamode metamaterials(PMs)with hierarchical structural tunability were additively manufactured via selective laser melting.The mechanical and mass-transport properties of scaffolds could be simultaneously tuned by the graded porosity(B/T ratio)and the tapering level(D/d ratio).Compared with traditional metallic biomaterials,our biomimetic PM scaffolds possess graded pore distribution,suitable strength,and significant improvements to cell seeding efficiency,permeability,and impact-tolerant capacity,and they also promote in vivo osteogenesis,indicating promising application for cell proliferation and bone regeneration using a structural innovation.
基金sponsored by National Key Research and Development Program "Additive Manufacturing and Laser Manufacturing" (No. 2016YFB1100101)Natural and Science Foundation of China (Grant Nos. 51775208, 51505166)+4 种基金Hubei Science Fund for Distinguished Young Scholars (No. 0216110085)Wuhan Morning Light Plan of Youth Science and Technology (No. 0216110066)Graduates’ Innovation Fund, Huazhong University of Science and Technology (No. 5003110027)Fundamental Research Funds for the Central University (No. 2017JYCXJJ004)the Academic frontier youth team at Huazhong University of Science and Technology (HUST)
文摘Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural materials, is well known for high specific strength and good corrosion resistance. But the poor laser formability of aluminum alloy restricts its application. There are problems such as limited processable materials, immature process conditions and metallurgical defects on SLM processing aluminum alloys. Some efforts have been made to solve the above problems. This paper discusses the current research status both related to the scientific understanding and technology applications. The paper begins with a brief introduction of basic concepts of aluminum alloys and technology characterization of laser selective melting. In addition, solidification theory of SLM process and formation mechanism of metallurgical defects are discussed. Then, the current research status of microstructure, properties and heat treatment of SLM processing aluminum alloys is systematically reviewed respectively. Lastly, a future outlook is given at the end of this review paper.
基金financially supported by the Boeing Company/HuaZhong University of Science and Technology Project“Compressor wheel production by laser additive manufacturing using Ti and Al alloy powders”(No.2016-495)the Hubei Science Fund for Distinguished Young Scholars(No.0216110085)+1 种基金the Wuhan Morning Light Plan of Youth Science and Technology(No.0216110066)the Academic Frontier Youth Team(Nos.2017QYTD06 and 2018QYTD04)at Huazhong University of Science and Technology(HUST).
文摘The influence of the microstructure on mechanical properties of AlSi10Mg fabricated by casting and selective laser melting(SLM)were investigated and contrasted in this work,with an emphasis on understanding the forming mechanism.The microstructure,phase structure and mechanical properties were characterized by scanning electron microscopy/field-emission Transmission Electron Microscopy(SEM/TEM),X-Ray Diffraction(XRD),tensile and fatigue tests.The results indicated that the SLM AlSi10Mg exhibited a supersaturated Si network structure precipitated alongα-Al cell.Brittleβ-Al5FeSi andπ-Al8FeMg3Si6 phases were found in the as-cast and SLM AlSi10Mg respectively due to different thermal histories during processing.The SLM AlSi10Mg showed higher tensile strength but lower elongation than the casting,as the result of grain refinement and tortuous crack path.The fatigue results revealed that unmelted powder,oxide inclusion and pores can considerably degrade the fatigue properties for the SLM AlSi10Mg.The SLM process offered a new method for material processing that would avoid harmful Fe-bearing intermetallic compounds and refine the microstructures for enhancing strength.