Pre-harvest sprouting(PHS)is a disadvantageous trait in cereal production worldwide,causing large economic losses each year.Its regulation mechanism is still unclear.We generated the Oryza sativa Viviparous1(OsVP1)mut...Pre-harvest sprouting(PHS)is a disadvantageous trait in cereal production worldwide,causing large economic losses each year.Its regulation mechanism is still unclear.We generated the Oryza sativa Viviparous1(OsVP1)mutant using gene editing technique,which shows increased PHS compared with that of the wild type Nipponbare.OsVP1 is localized mainly in the nucleus and expressed in various tissues and organs.Expression of Seed dormancy 4(Sdr4),a key gene controlling PHS,was sharply reduced in OsVP1 mutants.OsVP1 bound to the specific motif CACCTG in the promoter of Sdr4 and activated its expression in rice protoplasts.Overexpression of Sdr4 reduced the high seed germination rate of OsVP1 mutant cr-osvp1-1,showing that Sdr4 acts as a downstream target of OsVP1.Both OsVP1 and Sdr4 loss-of-function mutants were insensitive to exogenous ABA and employed the ABA signaling pathway in regulating seed dormancy.These findings shed light on the control of seed dormancy aimed at preventing PHS in rice.展开更多
The mesocotyl,a structure located between the basal part of the seminal root and the coleoptile node of seedlings,contributes to pushing the shoot tip through the soil surface,a function that is essential for the unif...The mesocotyl,a structure located between the basal part of the seminal root and the coleoptile node of seedlings,contributes to pushing the shoot tip through the soil surface,a function that is essential for the uniform emergence of direct-seeded rice.Its elongation is inhibited by light and induced in darkness.This investigation of an indica rice(P25)with vigorous mesocotyl elongation was aimed at identifying the"omics"basis of its lightinduced growth inhibition.A transcriptomic comparison between mesocotyl tissues that had developed in the dark and then been exposed to light identified many differentially expressed genes(DEGs)and differentially abundant micro RNAs(mi RNAs).Degradome sequencing analysis revealed 27 negative mi RNA-target pairs.A co-expression regulatory network was constructed based on the mi RNAs,their corresponding targets,and DEGs with a common Gene Ontology term.It suggested that auxin and light,probably antagonistically,affect mesocotyl elongation by regulating polyamine oxidase activity.展开更多
A mechanized direct seeding of rice with less labor and water usage,has been widely adopted.However,this approach requires varieties that exhibit uniform seedling emergence.Mesocotyl elongation(ME)offers the main driv...A mechanized direct seeding of rice with less labor and water usage,has been widely adopted.However,this approach requires varieties that exhibit uniform seedling emergence.Mesocotyl elongation(ME)offers the main drive of fast emergence of rice seedlings from soils;nevertheless,its genetic basis remains unknown.Here,we identify a major rice quantitative trait locus Mesocotyl Elongation1(qME1),an allele of the Green Revolution gene Semi-Dwarf1(SD1),encoding GA20-oxidase for gibberellin(GA)biosynthesis.ME1 expression is strongly induced by soil depth and ethylene.When rice grains are direct-seeded in soils,the ethylene core signaling factor OsEIL1 directly promotes ME1 transcription,accelerating bioactive GA biosynthesis.The GAs further degrade the DELLA protein SLENDER RICE 1(SLR1),alleviating its inhibition of rice PHYTOCHROME-INTERACTING FACTOR-LIKE13(OsPIL13)to activate the downstream expansion gene OsEXPA4 and ultimately promote rice seedling ME and emergence.The ancient traits of long mesocotyl and strong emergence ability in wild rice and landrace were gradually lost in company with the Green Revolution dwarf breeding process,and an elite ME1-R allele(D349H)is found in some modern Geng varieties(long mesocotyl lengths)in northern China,which can be used in the direct seeding and dwarf breeding of Geng varieties.Furthermore,the ectopic and high expression of ME1 driven by mesocotyl-specific promoters resulted in rice plants that could be direct-seeded without obvious plant architecture or yield penalties.Collectively,we reveal the molecular mechanism of rice ME,and provide useful information for breeding new Green Revolution varieties with long mesocotyl suitable for direct-seeding practice.展开更多
基金supported by grants from the National Major Science and Technology Program on New GMO Organism Variety Breeding(2016ZX08001-001)Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS)。
文摘Pre-harvest sprouting(PHS)is a disadvantageous trait in cereal production worldwide,causing large economic losses each year.Its regulation mechanism is still unclear.We generated the Oryza sativa Viviparous1(OsVP1)mutant using gene editing technique,which shows increased PHS compared with that of the wild type Nipponbare.OsVP1 is localized mainly in the nucleus and expressed in various tissues and organs.Expression of Seed dormancy 4(Sdr4),a key gene controlling PHS,was sharply reduced in OsVP1 mutants.OsVP1 bound to the specific motif CACCTG in the promoter of Sdr4 and activated its expression in rice protoplasts.Overexpression of Sdr4 reduced the high seed germination rate of OsVP1 mutant cr-osvp1-1,showing that Sdr4 acts as a downstream target of OsVP1.Both OsVP1 and Sdr4 loss-of-function mutants were insensitive to exogenous ABA and employed the ABA signaling pathway in regulating seed dormancy.These findings shed light on the control of seed dormancy aimed at preventing PHS in rice.
基金financially supported by the National S&T Major Project of China(2016ZX08001006)the National Key Research and Development Program of China(2016YFD0101801 and 2017YFD0100300)the Agricultural Science and Technology Innovation Program of CAAS。
文摘The mesocotyl,a structure located between the basal part of the seminal root and the coleoptile node of seedlings,contributes to pushing the shoot tip through the soil surface,a function that is essential for the uniform emergence of direct-seeded rice.Its elongation is inhibited by light and induced in darkness.This investigation of an indica rice(P25)with vigorous mesocotyl elongation was aimed at identifying the"omics"basis of its lightinduced growth inhibition.A transcriptomic comparison between mesocotyl tissues that had developed in the dark and then been exposed to light identified many differentially expressed genes(DEGs)and differentially abundant micro RNAs(mi RNAs).Degradome sequencing analysis revealed 27 negative mi RNA-target pairs.A co-expression regulatory network was constructed based on the mi RNAs,their corresponding targets,and DEGs with a common Gene Ontology term.It suggested that auxin and light,probably antagonistically,affect mesocotyl elongation by regulating polyamine oxidase activity.
基金supported by the National Natural Science Foundation of China(32188102 and 32101763)Zhejiang Provincial Science and Technology Project(2020R51007)+1 种基金the Key Research and Development Program of Zhejiang province(2022C02011)the Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-CACB-202402).
文摘A mechanized direct seeding of rice with less labor and water usage,has been widely adopted.However,this approach requires varieties that exhibit uniform seedling emergence.Mesocotyl elongation(ME)offers the main drive of fast emergence of rice seedlings from soils;nevertheless,its genetic basis remains unknown.Here,we identify a major rice quantitative trait locus Mesocotyl Elongation1(qME1),an allele of the Green Revolution gene Semi-Dwarf1(SD1),encoding GA20-oxidase for gibberellin(GA)biosynthesis.ME1 expression is strongly induced by soil depth and ethylene.When rice grains are direct-seeded in soils,the ethylene core signaling factor OsEIL1 directly promotes ME1 transcription,accelerating bioactive GA biosynthesis.The GAs further degrade the DELLA protein SLENDER RICE 1(SLR1),alleviating its inhibition of rice PHYTOCHROME-INTERACTING FACTOR-LIKE13(OsPIL13)to activate the downstream expansion gene OsEXPA4 and ultimately promote rice seedling ME and emergence.The ancient traits of long mesocotyl and strong emergence ability in wild rice and landrace were gradually lost in company with the Green Revolution dwarf breeding process,and an elite ME1-R allele(D349H)is found in some modern Geng varieties(long mesocotyl lengths)in northern China,which can be used in the direct seeding and dwarf breeding of Geng varieties.Furthermore,the ectopic and high expression of ME1 driven by mesocotyl-specific promoters resulted in rice plants that could be direct-seeded without obvious plant architecture or yield penalties.Collectively,we reveal the molecular mechanism of rice ME,and provide useful information for breeding new Green Revolution varieties with long mesocotyl suitable for direct-seeding practice.