Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, a...Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, and SKKS phases indicates time-delays from 1.60 ms/km to 2.30 ms/km in the crust, and from 0.55 s to 1.65 s in the upper mantle which corresponds to an The polarization orientations of fast shear waves in direction, and the mantle anisotropy has a nearly styles and mechanisms exist between the crust and anisotropic layer with a thickness about between 55 165 km. the crust are complicated with a predominantly north-south west-east direction. Our results show different deformation upper mantle.展开更多
When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave ...When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations.展开更多
The 2010 Yushu MsT.1 earthquake occurred in Ganzi-Yushu fault, which is the south boundary of Bayan Har block. In this study, by using double difference algorithm, the locations of mainshock (33.13°N, 96.59°...The 2010 Yushu MsT.1 earthquake occurred in Ganzi-Yushu fault, which is the south boundary of Bayan Har block. In this study, by using double difference algorithm, the locations of mainshock (33.13°N, 96.59°E, focal depth 10.22 km) and more than 600 aftershocks were obtained. The focal mechanisms of the mainshock and some aftershocks with Ms〉3.5 were estimated by jointly using broadband velocity waveforms from Global Seismic Network (GSN) and Qinghai Seismic Network as well. The focal mechanisms and relocation show that the strike of the fault plane is about 125° (WNW-ESE), and the mainshock is left-laterally strikeslip. The parameters of shear-wave splitting were obtained at seismic stations of YUS and L6304 by systematic analysis method of shear-wave splitting (SAM) method. Based on the parameters of shear-wave splitting and focal mechanism, the characteristics of stress field in seismic source zone were analyzed. The directions of polarization at stations YUS and L6304 are different. It is concluded that after the mainshock and the Ms6.3 aftershock on April 14, the stress-field was changed.展开更多
The Xiaojiang faults,striking north-tosouth(NS),and the Honghe faults,striking north-to-west(NW),are first-order block boundaries that intersect to form a concentrated stress zone at an acute angle in the southern par...The Xiaojiang faults,striking north-tosouth(NS),and the Honghe faults,striking north-to-west(NW),are first-order block boundaries that intersect to form a concentrated stress zone at an acute angle in the southern part of the Sichuan-Yunnan rhombic block(SYB).It is also a crucial zone for material escaping from the Tibetan Plateau(TP)due to the collision between the Indian Plate and the Eurasian Plate.In December 2017,the Institute of Earthquake Forecasting of the China Earthquake Administration(CEA)deployed a linear temporary seismic broadband array,the Honghe-Xiaojiang temporary Seismic Array(HX Array),across first-order block boundaries in the southern SYB.By using the waveform data of small earthquakes recorded by stations in the HX Array across Xiaojiang faults from 2017 to 2019,and by permanent seismic stations of the China National Earthquake Networks from 2012 to 2019,this paper adopts the systematic analysis method of shear-wave splitting(SWS),SAM method,to obtain preliminary results for seismic anisotropy in the upper crust.The study area can be divided into two subzones according to the spatial distribution of the directions of polarization of the fast shear-wave(PFS)at the stations:the northern zone(zone A,where the HX Array is located)and the southern zone(zone B,to the south of the HX Array).The results show that the directions of the PFS at stations in zone A were highly consistent,dominant in the NE direction,correlated with the in-situ principal compressive stress,and were seemingly unaffected by the Xiaojiang faults.The directions of the PFS as recorded at stations in zone B were more complicated,and were dominant in the NS direction parallel to that of the regional principal compressive stress.This suggests the joint influence of complex tectonics and regional stress in this narrow wedge area.By referring to the azimuthal anisotropy derived from seismic ambient noise in the southeast margin of the TP,the NS direction of the PFS in the middle and lower crust,and its EW direction in the upper mantle,this paper concludes that azimuthal anisotropy in the upper crust differed from that in the lower crust in the south segment of Xiaojiang faults,at least beneath the observation area,and azimuthal anisotropy in the crust was different from that in the upper mantle.The results support the pattern of deformation of ductile flow in the lower crust,and the decoupling between the upper and lower crusts as well as that between the crust and the mantle in the study area.The crustal directions of the PFS appeared to be independent of the Xiaojiang faults,suggesting that the influence of the South China block on the SYB passed through the Xiaojiang faults to the Yimen region.The results of this study indicate that anisotropic studies based on data on the dense temporary seismic array can yield clearer tectonic information,and reveal the complex spatial distribution of stress and deformation in the upper crust of the south segment of Xiaojiang faults.展开更多
Shanxi Graben is in the middle part of the North China Craton, from south to north. With the teleseismic data recorded by Regional Seismograph Networks and the temporary ZBnet-W Seismic Array around east part of Shanx...Shanxi Graben is in the middle part of the North China Craton, from south to north. With the teleseismic data recorded by Regional Seismograph Networks and the temporary ZBnet-W Seismic Array around east part of Shanxi Graben, we measured the crustal thickness and Vp/Vs ratio beneath each station using the H-K stack of receiver functions. The observed crustal thickness shows obvious lateral variation, increasing gradually from east to west in the Shanxi Graben. Beneath the Shanxi Graben the crust is relatively thicker than both sides of the south and the north. In addition, the Vp/Vs ratio in the north of study zone is higher than that in the south. The highest Vp/Vs ratio exists in the crust of the Xinding basin and the Datong basin. Our study also suggests that high velocity ratio might result from the strong activities of the magmation and volcanism.展开更多
Flexible solid-state battery has several unique characteristics including high flexibility,easy portability,and high safety,which may have broad application prospects in new technology products such as rollup displays...Flexible solid-state battery has several unique characteristics including high flexibility,easy portability,and high safety,which may have broad application prospects in new technology products such as rollup displays,power implantable medical devices,and wearable equipments.The interfacial mechanical and electrochemical problems caused by bending deformation,resulting in the battery damage and failure,are particularly interesting.Herein,a fully coupled electro-chemo-mechanical model is developed based on the actual solid-state battery structure.Concentration-dependent material parameters,stress-dependent diffusion,and potential shift are considered.According to four bending forms(k=8/mm,0/mm,-8/mm,and free),the results show that the negative curvature bending is beneficial to reducing the plastic strain during charging/discharging,while the positive curvature is detrimental.However,with respect to the electrochemical performance,the negative curvature bending creates a negative potential shift,which causes the battery to reach the cut-off voltage earlier and results in capacity loss.These results enlighten us that suitable electrode materials and charging strategy can be tailored to reduce plastic deformation and improve battery capacity for different forms of battery bending.展开更多
We performed a receiver function analysis on teleseismic data recorded along two dense seismic profiles and from 4 broadband regional seismic stations across the northeastern Tibetan plateau.The crustal thickness and ...We performed a receiver function analysis on teleseismic data recorded along two dense seismic profiles and from 4 broadband regional seismic stations across the northeastern Tibetan plateau.The crustal thickness and vP/vS ratio were measured by the H-κdomain search algorithm.The Moho discontinuity across the Haiyuan arc fault zone was also revealed by common conversion point(CCP)imaging.Our study results show that the crustal thickness and the vP/vS ratio were 42–56 km and 1.60–1.88,respectively.The crustal thickening on the northeastern margin indicates that the crust is shortening or that there was a superimposition of crusts during the collision of the Tibetan plateau with Eurasian block.Our results suggest that Haiyuan fault likely resulted from the interactions of high temperature and pressure conditions during the collision of the Indian and Asian continents.The Moho beneath the Haiyuan tectonic region exhibits an obvious offset and a vague discontinuity according to CCP imaging.This study suggests that the Haiyuan arc fault zone is a trans-crustal fault that cuts through the Moho in the northeastern Tibetan Plateau.Moreover,there are indications of strong deformation in the intensive crustal extrusion from the interior of the Tibetan Plateau to its northeastern margin.展开更多
Seismic tomography is one of the main tools to explore the interior of the earth.In this study,the quasi-waveform seismic tomographic method is used for the first time to reveal the crustal structures in the capital r...Seismic tomography is one of the main tools to explore the interior of the earth.In this study,the quasi-waveform seismic tomographic method is used for the first time to reveal the crustal structures in the capital region of China.3-D highresolution V_P,V_S and the Poisson’s ratio models are generated by inverting 29839 direct P-and 29972 direct S-wave traveltimes selected from 3231 local earthquakes.The results reveal strong crustal heterogeneities.The velocity anomalies at shallow depths are well consistent with surface geologic structures.The relatively low-velocity anomaly layer in the middle crust may be the result of multiple phases of tectonic activity.Earthquakes generally occurred on the boundaries of high-and low-velocity and Poisson’s ratio anomalies.There are obvious low-velocity anomalies below the hypocenters of the Tangshan earthquake and the historical Sanhe-Pinggu earthquake,implying the existence of fluids.The similar velocity structures around the hypocenters of the two earthquakes indicate that the occurrences of the two earthquakes may be related to the same mechanism.The highresolution velocity models provide important observational constraints on the small-scale heterogeneities and dynamic mechanism of the crust in the capital region of China.展开更多
基金supported by National NaturalScience Foundation of China Project(No.41174042)China National Special Fund for Earthquake Scientific Research in Public Interest(No.201008001)Basic Research Project of Institute of Earthquake Science,CEA(No.2009-21)
文摘Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, and SKKS phases indicates time-delays from 1.60 ms/km to 2.30 ms/km in the crust, and from 0.55 s to 1.65 s in the upper mantle which corresponds to an The polarization orientations of fast shear waves in direction, and the mantle anisotropy has a nearly styles and mechanisms exist between the crust and anisotropic layer with a thickness about between 55 165 km. the crust are complicated with a predominantly north-south west-east direction. Our results show different deformation upper mantle.
基金supported by International Science and Technology Cooperation Program of China(2010DFB20190)National Natural Science Foundation of China(41040034 and 41174042)the support by basic research project of Institute of Earthquake Science,China Earthquake Administration(2009IES0211)
文摘When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations.
基金supported by basic research project of Institute of Earthquake Science of China Earthquake Science(No.2009-21)National Natural Science Foundation of China(No.41040034)
文摘The 2010 Yushu MsT.1 earthquake occurred in Ganzi-Yushu fault, which is the south boundary of Bayan Har block. In this study, by using double difference algorithm, the locations of mainshock (33.13°N, 96.59°E, focal depth 10.22 km) and more than 600 aftershocks were obtained. The focal mechanisms of the mainshock and some aftershocks with Ms〉3.5 were estimated by jointly using broadband velocity waveforms from Global Seismic Network (GSN) and Qinghai Seismic Network as well. The focal mechanisms and relocation show that the strike of the fault plane is about 125° (WNW-ESE), and the mainshock is left-laterally strikeslip. The parameters of shear-wave splitting were obtained at seismic stations of YUS and L6304 by systematic analysis method of shear-wave splitting (SAM) method. Based on the parameters of shear-wave splitting and focal mechanism, the characteristics of stress field in seismic source zone were analyzed. The directions of polarization at stations YUS and L6304 are different. It is concluded that after the mainshock and the Ms6.3 aftershock on April 14, the stress-field was changed.
基金This work was supported by the National Natural Science Foundation of China(No.41730212)the National Key R&D Project of China(No.2017YFC1500304)the Basic Research Project of Institute of Earthquake Science,CEA(No.2017IES010202).
文摘The Xiaojiang faults,striking north-tosouth(NS),and the Honghe faults,striking north-to-west(NW),are first-order block boundaries that intersect to form a concentrated stress zone at an acute angle in the southern part of the Sichuan-Yunnan rhombic block(SYB).It is also a crucial zone for material escaping from the Tibetan Plateau(TP)due to the collision between the Indian Plate and the Eurasian Plate.In December 2017,the Institute of Earthquake Forecasting of the China Earthquake Administration(CEA)deployed a linear temporary seismic broadband array,the Honghe-Xiaojiang temporary Seismic Array(HX Array),across first-order block boundaries in the southern SYB.By using the waveform data of small earthquakes recorded by stations in the HX Array across Xiaojiang faults from 2017 to 2019,and by permanent seismic stations of the China National Earthquake Networks from 2012 to 2019,this paper adopts the systematic analysis method of shear-wave splitting(SWS),SAM method,to obtain preliminary results for seismic anisotropy in the upper crust.The study area can be divided into two subzones according to the spatial distribution of the directions of polarization of the fast shear-wave(PFS)at the stations:the northern zone(zone A,where the HX Array is located)and the southern zone(zone B,to the south of the HX Array).The results show that the directions of the PFS at stations in zone A were highly consistent,dominant in the NE direction,correlated with the in-situ principal compressive stress,and were seemingly unaffected by the Xiaojiang faults.The directions of the PFS as recorded at stations in zone B were more complicated,and were dominant in the NS direction parallel to that of the regional principal compressive stress.This suggests the joint influence of complex tectonics and regional stress in this narrow wedge area.By referring to the azimuthal anisotropy derived from seismic ambient noise in the southeast margin of the TP,the NS direction of the PFS in the middle and lower crust,and its EW direction in the upper mantle,this paper concludes that azimuthal anisotropy in the upper crust differed from that in the lower crust in the south segment of Xiaojiang faults,at least beneath the observation area,and azimuthal anisotropy in the crust was different from that in the upper mantle.The results support the pattern of deformation of ductile flow in the lower crust,and the decoupling between the upper and lower crusts as well as that between the crust and the mantle in the study area.The crustal directions of the PFS appeared to be independent of the Xiaojiang faults,suggesting that the influence of the South China block on the SYB passed through the Xiaojiang faults to the Yimen region.The results of this study indicate that anisotropic studies based on data on the dense temporary seismic array can yield clearer tectonic information,and reveal the complex spatial distribution of stress and deformation in the upper crust of the south segment of Xiaojiang faults.
基金supported by the National Natural Science Foundation of China(No.41230210)the Projects of International Cooperation and Exchanges from the Ministry of Science and Technology of China(Grant No.2010DFB20190)the Fundamental Research Funds for the Institute of Earthquake Science,China Earthquake Administration
文摘Shanxi Graben is in the middle part of the North China Craton, from south to north. With the teleseismic data recorded by Regional Seismograph Networks and the temporary ZBnet-W Seismic Array around east part of Shanxi Graben, we measured the crustal thickness and Vp/Vs ratio beneath each station using the H-K stack of receiver functions. The observed crustal thickness shows obvious lateral variation, increasing gradually from east to west in the Shanxi Graben. Beneath the Shanxi Graben the crust is relatively thicker than both sides of the south and the north. In addition, the Vp/Vs ratio in the north of study zone is higher than that in the south. The highest Vp/Vs ratio exists in the crust of the Xinding basin and the Datong basin. Our study also suggests that high velocity ratio might result from the strong activities of the magmation and volcanism.
基金the National Natural Science Foundation of China(No.11902144)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX201074)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB430022)the Guizhou Provincial General Undergraduate Higher Education Technology Supporting Talent Support Program(No.KY(2018)043)。
文摘Flexible solid-state battery has several unique characteristics including high flexibility,easy portability,and high safety,which may have broad application prospects in new technology products such as rollup displays,power implantable medical devices,and wearable equipments.The interfacial mechanical and electrochemical problems caused by bending deformation,resulting in the battery damage and failure,are particularly interesting.Herein,a fully coupled electro-chemo-mechanical model is developed based on the actual solid-state battery structure.Concentration-dependent material parameters,stress-dependent diffusion,and potential shift are considered.According to four bending forms(k=8/mm,0/mm,-8/mm,and free),the results show that the negative curvature bending is beneficial to reducing the plastic strain during charging/discharging,while the positive curvature is detrimental.However,with respect to the electrochemical performance,the negative curvature bending creates a negative potential shift,which causes the battery to reach the cut-off voltage earlier and results in capacity loss.These results enlighten us that suitable electrode materials and charging strategy can be tailored to reduce plastic deformation and improve battery capacity for different forms of battery bending.
基金supported by National Natural Science foundation of China(Nos.41474032 and U1839209)the Basic Research Project of the Institute of Earthquake Forecasting,China Earthquake Administration(Nos.2019CSES0102 and 2012IES010101).
文摘We performed a receiver function analysis on teleseismic data recorded along two dense seismic profiles and from 4 broadband regional seismic stations across the northeastern Tibetan plateau.The crustal thickness and vP/vS ratio were measured by the H-κdomain search algorithm.The Moho discontinuity across the Haiyuan arc fault zone was also revealed by common conversion point(CCP)imaging.Our study results show that the crustal thickness and the vP/vS ratio were 42–56 km and 1.60–1.88,respectively.The crustal thickening on the northeastern margin indicates that the crust is shortening or that there was a superimposition of crusts during the collision of the Tibetan plateau with Eurasian block.Our results suggest that Haiyuan fault likely resulted from the interactions of high temperature and pressure conditions during the collision of the Indian and Asian continents.The Moho beneath the Haiyuan tectonic region exhibits an obvious offset and a vague discontinuity according to CCP imaging.This study suggests that the Haiyuan arc fault zone is a trans-crustal fault that cuts through the Moho in the northeastern Tibetan Plateau.Moreover,there are indications of strong deformation in the intensive crustal extrusion from the interior of the Tibetan Plateau to its northeastern margin.
基金supported by the National Natural Science Foundation of China(Grant No.41704047)supported by the National Natural Science Foundation of China(Grant No.11871297)Tsinghua University Initiative Scientific Research Program。
文摘Seismic tomography is one of the main tools to explore the interior of the earth.In this study,the quasi-waveform seismic tomographic method is used for the first time to reveal the crustal structures in the capital region of China.3-D highresolution V_P,V_S and the Poisson’s ratio models are generated by inverting 29839 direct P-and 29972 direct S-wave traveltimes selected from 3231 local earthquakes.The results reveal strong crustal heterogeneities.The velocity anomalies at shallow depths are well consistent with surface geologic structures.The relatively low-velocity anomaly layer in the middle crust may be the result of multiple phases of tectonic activity.Earthquakes generally occurred on the boundaries of high-and low-velocity and Poisson’s ratio anomalies.There are obvious low-velocity anomalies below the hypocenters of the Tangshan earthquake and the historical Sanhe-Pinggu earthquake,implying the existence of fluids.The similar velocity structures around the hypocenters of the two earthquakes indicate that the occurrences of the two earthquakes may be related to the same mechanism.The highresolution velocity models provide important observational constraints on the small-scale heterogeneities and dynamic mechanism of the crust in the capital region of China.