The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
Rational design of catalytic sites to activate the C≡C bond is of paramount importance to advance acetylene hydrochlorination. Herein, Cu sites with electron-rich and electron-deficient states were constructed by con...Rational design of catalytic sites to activate the C≡C bond is of paramount importance to advance acetylene hydrochlorination. Herein, Cu sites with electron-rich and electron-deficient states were constructed by controlling the impregnation solutions. The π electrons flowing from acetylene to Cu site are facilitated over the electron-deficient Cu sites, achieving high activation of C≡C bond. The contradiction between the increased activation of acetylene required for enhanced catalytic activity and the resistance of Cu site to reduction by acetylene required for maintaining catalytic stability can be balanced by establishing strong interactions of Cu site with pyrrolic-N species. The catalytic activity displays a volcano shape scaling relationship as a function of Cu particle size. Tribasic copper chloride is concomitantly generated with the construction of electron-deficient Cu sites. The H–Cl bond of HCl can be activated over the tribasic copper chloride, accelerating the surface reaction of vinyl chloride production. This strategy of inducing electron deficiency provides new insight into the rational design of catalysts for the synthesis of vinyl chloride with a high catalytic performance.展开更多
Acute and chronic wounds affect millions of people around the world,imposing a growing financial burden on patients and hospitals.Despite the application of current wound management strategies,the physiological healin...Acute and chronic wounds affect millions of people around the world,imposing a growing financial burden on patients and hospitals.Despite the application of current wound management strategies,the physiological healing process is disrupted in many cases,resulting in impaired wound healing.Therefore,more efficient and easy-to-use treatment modalities are needed.In this study,we demonstrate the benefit of in vivo printed,growth factor-eluting adhesive scaffolds for the treatment of full-thickness wounds in a porcine model.A custom-made handheld printer is implemented to finely print gelatin-methacryloyl(GelMA)hydrogel containing vascular endothelial growth factor(VEGF)into the wounds.In vitro and in vivo results show that the in situ GelMA crosslinking induces a strong scaffold adhesion and enables printing on curved surfaces of wet tissues,without the need for any sutures.The scaffold is further shown to offer a sustained release of VEGF,enhancing the migration of endothelial cells in vitro.Histological analyses demonstrate that the administration of the VEGF-eluting GelMA scaffolds that remain adherent to the wound bed significantly improves the quality of healing in porcine wounds.The introduced in vivo printing strategy for wound healing applications is translational and convenient to use in any place,such as an operating room,and does not require expensive bioprinters or imaging modalities.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金Financial support from the National Natural Science Foundation of China (NSFCgrant No.U20A20119,21606199,22078302,52070035)+3 种基金the Science and Technology Department of Zhejiang Province (LGG20B060004)the China Postdoctoral Science Foundation (2020M671791)the Jilin Province Scientific and the Technological Planning Project of China (No.20200403001SF)the National Key Research and Development Program of China (2021YFA1501800,2021YFA1501801,2021YFA1501802)。
文摘Rational design of catalytic sites to activate the C≡C bond is of paramount importance to advance acetylene hydrochlorination. Herein, Cu sites with electron-rich and electron-deficient states were constructed by controlling the impregnation solutions. The π electrons flowing from acetylene to Cu site are facilitated over the electron-deficient Cu sites, achieving high activation of C≡C bond. The contradiction between the increased activation of acetylene required for enhanced catalytic activity and the resistance of Cu site to reduction by acetylene required for maintaining catalytic stability can be balanced by establishing strong interactions of Cu site with pyrrolic-N species. The catalytic activity displays a volcano shape scaling relationship as a function of Cu particle size. Tribasic copper chloride is concomitantly generated with the construction of electron-deficient Cu sites. The H–Cl bond of HCl can be activated over the tribasic copper chloride, accelerating the surface reaction of vinyl chloride production. This strategy of inducing electron deficiency provides new insight into the rational design of catalysts for the synthesis of vinyl chloride with a high catalytic performance.
基金The financial support from the National Institutes of Health(GM126831,AR073822)Stepping Strong Innovator Award are gratefully acknowledged.
文摘Acute and chronic wounds affect millions of people around the world,imposing a growing financial burden on patients and hospitals.Despite the application of current wound management strategies,the physiological healing process is disrupted in many cases,resulting in impaired wound healing.Therefore,more efficient and easy-to-use treatment modalities are needed.In this study,we demonstrate the benefit of in vivo printed,growth factor-eluting adhesive scaffolds for the treatment of full-thickness wounds in a porcine model.A custom-made handheld printer is implemented to finely print gelatin-methacryloyl(GelMA)hydrogel containing vascular endothelial growth factor(VEGF)into the wounds.In vitro and in vivo results show that the in situ GelMA crosslinking induces a strong scaffold adhesion and enables printing on curved surfaces of wet tissues,without the need for any sutures.The scaffold is further shown to offer a sustained release of VEGF,enhancing the migration of endothelial cells in vitro.Histological analyses demonstrate that the administration of the VEGF-eluting GelMA scaffolds that remain adherent to the wound bed significantly improves the quality of healing in porcine wounds.The introduced in vivo printing strategy for wound healing applications is translational and convenient to use in any place,such as an operating room,and does not require expensive bioprinters or imaging modalities.