期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
1
作者 Hongliang zhang Yi Chen +1 位作者 yuteng zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Electron-deficient Cu site catalyzed acetylene hydrochlorination 被引量:3
2
作者 Bolin Wang Chunxiao Jin +7 位作者 Shujuan Shao Yuxue Yue yuteng zhang Saisai Wang Renqin Chang Haifeng zhang Jia Zhao Xiaonian Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1128-1140,共13页
Rational design of catalytic sites to activate the C≡C bond is of paramount importance to advance acetylene hydrochlorination. Herein, Cu sites with electron-rich and electron-deficient states were constructed by con... Rational design of catalytic sites to activate the C≡C bond is of paramount importance to advance acetylene hydrochlorination. Herein, Cu sites with electron-rich and electron-deficient states were constructed by controlling the impregnation solutions. The π electrons flowing from acetylene to Cu site are facilitated over the electron-deficient Cu sites, achieving high activation of C≡C bond. The contradiction between the increased activation of acetylene required for enhanced catalytic activity and the resistance of Cu site to reduction by acetylene required for maintaining catalytic stability can be balanced by establishing strong interactions of Cu site with pyrrolic-N species. The catalytic activity displays a volcano shape scaling relationship as a function of Cu particle size. Tribasic copper chloride is concomitantly generated with the construction of electron-deficient Cu sites. The H–Cl bond of HCl can be activated over the tribasic copper chloride, accelerating the surface reaction of vinyl chloride production. This strategy of inducing electron deficiency provides new insight into the rational design of catalysts for the synthesis of vinyl chloride with a high catalytic performance. 展开更多
关键词 C≡C bond Acetylene hydrochlorination Cu sites Tribasic copper chloride ELECTRON-DEFICIENT
下载PDF
In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing 被引量:8
3
作者 Kristo Nuutila Mohamadmahdi Samandari +5 位作者 Yori Endo yuteng zhang Jacob Quint Tannin ASchmidt b Ali Tamayol Indranil Sinha 《Bioactive Materials》 SCIE 2022年第2期296-308,共13页
Acute and chronic wounds affect millions of people around the world,imposing a growing financial burden on patients and hospitals.Despite the application of current wound management strategies,the physiological healin... Acute and chronic wounds affect millions of people around the world,imposing a growing financial burden on patients and hospitals.Despite the application of current wound management strategies,the physiological healing process is disrupted in many cases,resulting in impaired wound healing.Therefore,more efficient and easy-to-use treatment modalities are needed.In this study,we demonstrate the benefit of in vivo printed,growth factor-eluting adhesive scaffolds for the treatment of full-thickness wounds in a porcine model.A custom-made handheld printer is implemented to finely print gelatin-methacryloyl(GelMA)hydrogel containing vascular endothelial growth factor(VEGF)into the wounds.In vitro and in vivo results show that the in situ GelMA crosslinking induces a strong scaffold adhesion and enables printing on curved surfaces of wet tissues,without the need for any sutures.The scaffold is further shown to offer a sustained release of VEGF,enhancing the migration of endothelial cells in vitro.Histological analyses demonstrate that the administration of the VEGF-eluting GelMA scaffolds that remain adherent to the wound bed significantly improves the quality of healing in porcine wounds.The introduced in vivo printing strategy for wound healing applications is translational and convenient to use in any place,such as an operating room,and does not require expensive bioprinters or imaging modalities. 展开更多
关键词 In vivo printing Handheld bioprinter Adhesive scaffolds GelMA VEGF Wound healing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部