期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent achievements in selenium-based transition metal electrocatalysts for pH-universal water splitting
1
作者 yuwei jiang Sanshuang Gao +5 位作者 Xijun Liu Yin Wang Shuxing Zhou Qian Liu Abdukader Abdukayum Guangzhi Hu 《Nano Research》 SCIE EI CSCD 2024年第7期5763-5785,共23页
The electrolysis of water to produce hydrogen is an important technique to replace traditional fossil fuel-based hydrogen production.This method efficiently converts electrical energy into chemical energy,it is ostens... The electrolysis of water to produce hydrogen is an important technique to replace traditional fossil fuel-based hydrogen production.This method efficiently converts electrical energy into chemical energy,it is ostensibly a promising candidate for addressing the energy crisis.Significant effort has been devoted to developing efficient electrocatalysts for water electrolysis.The exploration of suitable catalytic materials for the hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and other bifunctional electrocatalytic reactions is crucial.Transition metal selenides(TMSes)have emerged as potential HER and OER electrocatalysts because of their unique electronic structures,which are beneficial for charge transfer,tuneable bandgaps,distinctive morphologies,and low-cost.This review discusses the mechanisms and performance comparisons of TMSes in overall water splitting under various pH conditions.From an industrial and commercial perspective,the catalytic performance of TMSes for the HER and OER is not ideal.Methods for preparing electrocatalytic materials and optimizing materials for overall water decomposition and modulation mechanisms have been introduced to improve electrocatalytic performance,such as element doping,carbon composites,bimetallic systems,morphology control,and heterogeneous interface engineering.Finally,the challenges and prospects of TMSes were discussed. 展开更多
关键词 hydrogen energy source electrocatalysis water splitting selenium-based materials transition metal
原文传递
A novel protein complex that regulates active DNA demethylation in Arabidopsis 被引量:2
2
作者 Pan Liu Wen-Feng Nie +11 位作者 Xiansong Xiong Yuhua Wang yuwei jiang Pei Huang Xueqiang Lin Guochen Qin Huan Huang Qingfeng Niu Jiamu Du Zhaobo Lang Rosa Lozano-Duran Jian-Kang Zhu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第4期772-786,共15页
Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression.The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base-excision repair pathway for active DNA demethy... Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression.The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base-excision repair pathway for active DNA demethylation and is required for the prevention of DNA hypermethylation at 1000 s of genomic regions in Arabidopsis.How ROS1 is regulated and targeted to specific genomic regions is not well understood.Here,we report the discovery of an Arabidopsis protein complex that contains ROS1,regulates ROS1 gene expression,and likely targets the ROS1 protein to specific genomic regions.ROS1 physically interacts with a WD40 domain protein(RWD40),which in turn interacts with a methyl-DNA binding protein(RMB1)as well as with a zinc finger and homeobox domain protein(RHD1).RMB1 binds to DNA that is methylated in any sequence context,and this binding is necessary for its function in vivo.Loss-of-function mutations in RWD40,RMB1,or RHD1 cause DNA hypermethylation at several tested genomic regions independently of the known ROS1 regulator IDM1.Because the hypermethylated genomic regions include the DNA methylation monitoring sequence in the ROS1 promoter,plants mutated in RWD40,RMB1,or RHD1 show increased ROS1 expression.Importantly,ROS1 binding to the ROS1 promoter requires RWD40,RMB1,and RHD1,suggesting that this complex dictates ROS1 targeting to this locus.Our results demonstrate that ROS1 forms a protein complex with RWD40,RMB1,and RHD1,and that this novel complex regulates active DNA demethylation at several endogenous loci in Arabidopsis. 展开更多
关键词 DNA demethylation DNA methylation methyl-DNA binding ROS1 WD40 domain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部