Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile...Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.展开更多
Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated...Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.展开更多
BACKGROUND: Physiological convulsive thresholds degrade when the brain is in some pathologic states; thus, a level of stimulus that cannot provoke a convulsion may evoke a seizure or epileptic seizure. OBJECTIVE: To...BACKGROUND: Physiological convulsive thresholds degrade when the brain is in some pathologic states; thus, a level of stimulus that cannot provoke a convulsion may evoke a seizure or epileptic seizure. OBJECTIVE: To investigate the changes that occur in the brain when the physiological convulsive threshold becomes pathological, and to determine what differences occur in pathological and physiological convulsive thresholds during the development of epilepsy. DESIGN: A randomized controlled animal experiment. SETTING: Research Institute of Epilepsy of Shanxi Medical University; Department of Neurology, The Third Hospital of Shanxi Medical University; Research Institute of Function of Shanxi Medical University. MATERIALS: Thirty-six female Wistar rats were selected for this study. The rats were obtained from the experimental animal center of Shanxi Medical University. All laboratory procedures complied with animal ethical standards. The animals were randomly divided into three groups: a strong current group, a weak current group and a control group, with 12 rats in each group. An automatic determinator of seizure threshold was made at Shanxi Medical University and Taiyuan University of Technology. Two bipolar stainless steel stimulating electrodes and an electrode connector (diameter 1.2 ram) were made at Taiyuan University of Technology. METHODS: This study was performed in the laboratory of Research Institute of the Epilepsy of Shanxi Medical University between December 2005 and August 2006. The threshold of localized seizures was measured by performing direct cortical stimulation in rats under anesthesia. After 1 week of post-operative recovery, electric stimulation was started with three different kinds of stimulation. Seizure activity was induced by a ramp-shaped single train of biphasic pulses (50 Hz, total pulse duration of 2 ms, increasing from 0 to 2 000μ A in 15 seconds). The threshold of localized seizures (TLS) has been defined as the minimum current intensity necessary to provoke convulsion of the forelimbs and/or facial muscles. Up to the TLS, if stimulation continued, the current intensity necessary to provoke the generalized seizures is called the threshold of generalized seizures (TGS). If stimulation is continued for about 2 seconds when the TGS is reached, rats still showed generalized clonic activity after stimulation ceased. When seizures stopped, a short period of immobility can be observed. The current intensity is called the threshold of prolonged seizures (TPS). The rats in the strong current group were stimulated up to the current level required to reach the TPS. In the course of stimulation, first, the TLS was recorded, then the TGS, and finally the TPS. The stimulation interval in one session was 10 minutes, repeated twice daily. The rats in the weak current group were only stimulated up to the current levels required to reach the TGS; first, the TLS was recorded and then the TGS was measured at the same time as the strong current group. Control animals were also equipped with a full electrode set and placed in the same conditions, but no stimulation took place, only electroencephalogram (EEG) recording at the same times as the experimental groups. MAIN OUTCOME MEASURES: ① Stimulation of the two experimental groups lasted for 11 weeks and then observation of their behavior and electroencephalogram recording continued for 4 weeks. The control group was also observed over a total of 15 weeks. ② Observing neuronal damage/loss in the hippocampus with a light microscope using a 250x visual field. RESULTS: All 36 Wistar rats were included in the final analysis. At the beginning of the experiment, the convulsive thresholds were all above 1 100 μA, although there were significant individual variations among rats of the same group. Those thresholds quickly declined during the initial 4 weeks of repetitive electrical stimulation. The convulsive thresholds approached a constant level in the 10^th week after commencement of stimulation. There were no significant changes in thresholds when stimulations lasted longer; the convulsive thresholds and the variations in rats of the same group were significantly lower than at the beginning of the trial (P 〈 0.01). An interictal discharge was also recorded in the 3^rd week in the strong current group, and in the 8th week in the weak current group; these discharges were concomitant with neuronal damage and loss in the hippocampus. There was no abnormality observed in the control group. CONCLUSION: These findings indicated that the convulsion threshold in the brain should be divided into two stages: a physiological convulsive threshold and a pathological convulsive threshold (epileptic threshold) The epileptic threshold is created by pathologically acquired factors, which give rise to brain damage. The increase in the intensity of these pathologically acquired factors led to aggravation of damage.展开更多
The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemic...The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemical properties of these materials.Catalytic performance of the samples was evaluated for methanol combustion.The cubically crystallized Co3O4 support displayed a three-dimensionally ordered mesoporous structure.The supported noble metal nanoparticles(NPs)possessed a surface area of 115.125 m^2/g,with the noble NPs(average size=2.8.4.5 nm)being uniformly dispersed on the surface of meso-Co3O4.Among all of the samples,0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 showed the highest catalytic activity(T50%=100℃and T90%=112℃at a space velocity of 80000 mL(g^–1 h^–1).The partial deactivation of the 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 sample due to water vapor or carbon dioxide introduction was reversible.It is concluded that the good catalytic performance of 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 was associated with its highly dispersed Ag0.75Au1.14Pd alloy NPs,high adsorbed oxygen species concentration,good low-temperature reducibility,and strong interaction between Ag0.75Au1.14Pd alloy NPs and meso-Co3O4.展开更多
We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artifi...We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artificial atom. When driving the cavity to a coherent state, the probe spectrum shows energy level splitting induced by the quantized electromagnetic field in the cavity. This splitting size is related to the coupling strength between the cavity and the artificial atom and, thus, is fixed after the sample is fabricated. This is in contrast to the classical Autler-Townes splitting of a three-level system in which the splitting is proportional to the driving amplitude, which can be continuously changed. Our experiment results show the difference between the classical microwave driving field and the quantum field of the cavity.展开更多
Considering the increase of structural disturbance caused by large thrust misalignment and lack of synchronism after installation of the solid booster on the rock,as well as the increase of external disturbance result...Considering the increase of structural disturbance caused by large thrust misalignment and lack of synchronism after installation of the solid booster on the rock,as well as the increase of external disturbance resulting from the installation of the configuration and tail,while also considering the parameter uncertainties,parameter perturbations,unmodeled dynamics and coupling between channels during modeling,this paper proposes the design method for the adaptive control of sliding mode variable structure,based on the model reference. The paper firstly establishes the attitude dynamics model for the solid strap-on launch vehicle; then proposes the design method for the adaptive control of the sliding mode variable structure based on the model reference,implements the design of attitude control system for the three channels respectively,and uses the Lyapunov function to prove the global asymptotic stability; and finally verifies,through numerical simulation,that the control method proposed in this paper can guarantee the attitude stability of rockets in the primary flight phase.展开更多
The PdPtVO_(x)/CeO_(2)-ZrO_(2)(PdPtVO_(x)/CZO)catalysts were obtained by using different approaches,and their physical and chemical properties were determined by various techniques.Catalytic activities of these materi...The PdPtVO_(x)/CeO_(2)-ZrO_(2)(PdPtVO_(x)/CZO)catalysts were obtained by using different approaches,and their physical and chemical properties were determined by various techniques.Catalytic activities of these materials in the presence of H_(2)O or SO_(2)were evaluated for the oxidation of ethylbenzene(EB).The PdPtVO_(x)/CZO sample exhibited high catalytic activity,good hydrothermal stability,and reversible sulfur dioxide-poisoning performance,over which the specific reaction rate at 160℃,turnover frequency at 160℃(TOF_(Pd or Pt)),and apparent activation energy were 72.6 mmol/(g_(Pt)·sec)or 124.2 mmol/(g_(Pd)·sec),14.2 sec^(-1)(TOF_(Pt))or 13.1 sec^(-1)(TOF_(Pd)),and 58 k J/mol,respectively.The large EB adsorption capacity,good reducibility,and strong acidity contributed to the good catalytic performance of PdPtVO_(x)/CZO.Catalytic activity of PdPtVO_(x)/CZO decreased when 50 ppm SO_(2)or(1.0 vol.%H_(2)O+50 ppm SO_(2))was added to the feedstock,but was gradually restored to its initial level after the SO_(2)was cut off.The good reversible sulfur dioxide-resistant performance of PdPtVO_(x)/CZO was associated with the facts:(i)the introduction of SO_(2)leads to an increase in surface acidity;(ii)V can adsorb and activate SO_(2),thus accelerating formation of the SO_(x)^(2-)(x=3 or 4)species at the V and CZO sites,weakening the adsorption of sulfur species at the PdPt active sites,and hence protecting the PdPt active sites to be not poisoned by SO_(2).EB oxidation over PdPtVO_(x)/CZO might take place via the route of EB→styrene→phenyl methyl ketone→benzaldehyde→benzoic acid→maleic anhydride→CO_(2)and H_(2)O.展开更多
The International Agency for Research on Cancer(IARC)established in 1965 as the cancer agency of the World Health Organization,focuses on cancer research and dedicates to developing strategies for cancer control globa...The International Agency for Research on Cancer(IARC)established in 1965 as the cancer agency of the World Health Organization,focuses on cancer research and dedicates to developing strategies for cancer control globally.On February 1,2024,IARC unveiled the latest global cancer burden estimates.展开更多
Volatile organic compounds(VOCs),methane,carbon monoxide,soot,automotive exhaust,and nitrogen oxides are harmful to the atmosphere and human health.It is urgent to strictly control their emissions.Heterogeneous cataly...Volatile organic compounds(VOCs),methane,carbon monoxide,soot,automotive exhaust,and nitrogen oxides are harmful to the atmosphere and human health.It is urgent to strictly control their emissions.Heterogeneous catalysis is an effective pathway for the removal of these pollutants,and the critical issue is the development of novel and high-performance catalysts.In this review,we briefly summarize the preparation methods,physicochemical properties,catalytic activities,and related reaction mechanisms for the above pollutants removal of the rare earth oxides,mixed rare earth oxide,rare earth oxidesupported noble metal,and mixed rare earth oxide-supported noble metal catalysts that have been investigated by our group and other researchers.It was found that catalytic performance was associated with the factors,such as specific surface area,pore structure,particle size and dispersion,adsorbed oxygen species concentration,reducibility,reactant activation ability or interaction between metal nanoparticles and support.Furthermore,we also envision the development trend of such a topic in future work.展开更多
Hexagonal ultrathin WO3 nano-ribbons (HUWNRs) of subnanometer thicknesses, 2-5 nm widths, and lengths of up to several micrometers were prepared by a solvothermal method. The as-prepared HUWNRs grow along the [001] ...Hexagonal ultrathin WO3 nano-ribbons (HUWNRs) of subnanometer thicknesses, 2-5 nm widths, and lengths of up to several micrometers were prepared by a solvothermal method. The as-prepared HUWNRs grow along the [001] direction, and the main exposed facet is the (720) crystal plane. The HUWNRs exhibit good electrochemical performance as an anode material in lithium ion batteries because of their unique structure. It is believed that these unique materials may be applied in many fields.展开更多
For electrocatalytic reduction of CO2 to CO,the stabilization of intermediate COOH^* and the desorption of CO^* are two key steps.Pd can easily stabilize COOH^*,whereas the strong CO^* binding to Pd surface results in...For electrocatalytic reduction of CO2 to CO,the stabilization of intermediate COOH^* and the desorption of CO^* are two key steps.Pd can easily stabilize COOH^*,whereas the strong CO^* binding to Pd surface results in severe poisoning,thus lowering catalytic activity and stability for CO2 reduction.On Ag surface,CO^* desorbs readily,while COOH^* requires a relatively high formation energy,leading to a high overpotential.In light of the above issues,we successfully designed the PdAg bimetallic catalyst to circumvent the drawbacks of sole Pd and Ag.The PdAg catalyst with Ag-terminated surface not only shows a much lower overpotential(-0.55 V with CO current density of 1 mA/cm^2)than Ag(−0.76 V),but also delivers a CO/H2 ratio 18 times as high as that for Pd at the potential of-0.75 V vs.RHE.The issue of CO poisoning is significantly alleviated on Ag-terminated PdAg surface,with the stability well retained after 4h electrolysis at-0.75 V vs.RHE.Density functional theory(DFT)calculations reveal that the Ag-terminated PdAg surface features a lowered formation energy for COOH^* and weakened adsorption for CO^*,which both contribute to the enhanced performance for CO2 reduction.展开更多
The properties of modified conventional wrought aluminum alloys cannot be significantly enhanced by normal post-heat treatment in that the fine-grained strengthening,arising from high cooling rate in SLM,is underutili...The properties of modified conventional wrought aluminum alloys cannot be significantly enhanced by normal post-heat treatment in that the fine-grained strengthening,arising from high cooling rate in SLM,is underutilized.In this work,compared with the normal T6 heat treatment,a novel simple direct aging regime was proposed to maintain the grain-boundary strengthening and to utilize the precipitation strengthening of secondary AlZr.It was found that a heterogeneous grain structure,which consisted of ultrafine equiaxed(~0.82μm)and columnar(~1.80μm)grains at the bottom and top of molten pool,respectively,was formed in the SLM processed sample.After direct aging(DA),the ultrafine grains were maintained and a mass of spherical coherent L1-AlZr particles with a mean radius of approximately1.15 nm was precipitated.In contrast,after solution treatment and aging(STA),a significant grain coarsening occurred in the equiaxed grain region.Meanwhile,the coarsening L1-AlZr particles,nano-sized S phases and GPB zones were detected in the STA sample.This subsequently induced that the yield strength of the DA sample(~435 MPa)was higher than that of the STA sample(~402 MPa)owing to the grain boundary strengthening and precipitation strengthening.Both the STA and DA samples exhibited a higher strength than that of the other SLMed Al-Cu-Mg series alloys;this was comparable to that of the wrought AA2024-T6 alloy(~393 MPa).Both the STA and DA samples exhibited a higher strength than that of the other SLMed Al-Cu-Mg series alloys;this was comparable to that of the wrought AA2024-T6alloy(~393 MPa).展开更多
α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m...α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m-xylene, acetone/ethyl acetate, acetone/m-xylene and ethyl acetate/m-xylene mixtures was evaluated. It was found that the interaction between Au-Pd alloy nanoparticles and α-MnO2 nanotubes significantly improved the reactivity of lattice oxygen, and the 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst outperformed the α-MnO2 nanotube catalyst in the oxidation of toluene, m-xylene, ethyl acetate and acetone. Over the0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst,(i) toluene oxidation was greatly inhibited in the toluene/m-xylene mixture, while m-xylene oxidation was not influenced;(ii) acetone and ethyl acetate oxidation suffered a minor impact in the acetone/ethyl acetate mixture; and(iii) m-xylene oxidation was enhanced whereas the oxidation of the oxygenated VOCs(volatile organic compounds) was suppressed in the acetone/m-xylene or ethyl acetate/m-xylene mixtures. The competitive adsorption of these typical VOCs on the catalyst surface induced an inhibitive effect on their oxidation, and increasing the temperature favored the oxidation of the VOCs. The mixed VOCs could be completely oxidized into CO2 and H2 O below 320°C at a space velocity of 40,000 m L/(g·hr). The 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst exhibited high catalytic stability as well as good tolerance to water vapor and CO2 in the oxidation of the VOC mixtures. Thus, the α-MnO2 nanotube-supported noble metal alloy catalysts hold promise for the efficient elimination of VOC mixtures.展开更多
Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniqu...Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniques. The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation. It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product. Spherical BiVO4 with porous structures, flower-cluster-like BiVO4, and flower-bundle-like BiVO4 were generated hydrothermally at 100°C with poly(vinyl pyrrolidone) (PVP) and urea (pH = 2) and at 160°C with NaHCO3 (pH = 7 and 8), respectively. The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g) and narrower bandgap energies (2.45-2.49 eV). The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area, narrower bandgap energy, higher surface oxygen vacancy density, and unique porous architecture.展开更多
Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-δS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol...Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-δS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-δS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m^2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi^5+, Bi^3+, V^5+, V^3+, Fe^3+, and Fe^2+ species in y wt.% FeOx/BiVO4-δS0.08. The 1.40 wt.% FeOx/BiVO4-δS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower baudgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-δS0.08.展开更多
Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via...Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via the KIT-6-templating and polyvinyl alcohol-protected reduction routes, respectively. Physical properties of the samples were characterized, and their photocatalytic activities were evaluated for the photocatalytic oxidation of acetone in the presence of a small amount of H2O2 under visible-light illumination. It was found that the meso-Fe2O3 was rhombohedral in crystal structure. The as-obtained samples displayed a high surface area of 111.0–140.8 m^2/g and a bandgap energy of 1.98–2.12 eV. The Au, Pd and/or Au–Pd alloy nanoparticles(NPs) with a size of 3–4 nm were uniformly dispersed on the surface of the meso-Fe2O3 support. The 0.72 wt.% AuP d1.48/meso-Fe2O3 sample performed the best in the presence of 0.06 mol/L H2O2 aqueous solution, showing a 100% acetone conversion within4 hr of visible-light illumination. It was concluded that the good performance of 0.72 wt.%AuPd(1.48)/meso-Fe2O3 for photocatalytic acetone oxidation was associated with its ordered mesoporous structure, high adsorbed oxygen species concentration, plasmonic resonance effect between AuPd(1.48) NPs and meso-Fe2O3, and effective separation of the photogenerated charge carriers. In addition, the introduction of H2O2 and the involvement of the photo-Fenton process also played important roles in enhancing the photocatalytic activity of 0.72 wt.%AuPd(1.48)/meso-Fe2O3.展开更多
Catalytic combustion is thought as an efficient and economic pathway to remove volatile organic compounds, and its critical issue is the development of high-performance catalytic materials. In this work, we used the i...Catalytic combustion is thought as an efficient and economic pathway to remove volatile organic compounds, and its critical issue is the development of high-performance catalytic materials. In this work, we used the in situ synthesis method to prepare the silicalite-1(S-1)-supported Pd nanoparticles(NPs). It is found that the as-prepared catalysts displayed a hexagonal prism morphology and a surface area of 390-440 m^(2)/g. The sample(0.28Pd/S-1-H)derived after reduction at 500°C in 10 vol% H_(2)showed the best catalytic activity for toluene combustion(T50%= 180℃ and T90%= 189℃ at a space velocity of 40,000 m L/(g·hr), turnover frequency(TOFPd) at 160℃ = 3.46 × 10^(-3)sec^(-1), and specific reaction rate at 160℃ = 63.8μmol/(gPd·sec)), with the apparent activation energy(41 k J/mol) obtained over the bestperforming 0.28Pd/S-1-H sample being much lower than those(51-70 k J/mol) obtained over the other samples(0.28Pd/S-1-A derived from calcination at 500℃ in air, 0.26Pd/S-1-im derived from the impregnation route, and 0.27Pd/ZSM-5-H prepared after reduction at 500℃ in 10 vol% H_(2)). Furthermore, the 0.28Pd/S-1-H sample possessed good thermal stability and its partial deactivation due to CO_(2) or H_(2)O introduction was reversible, but SO_(2) addition resulted in an irreversible deactivation. The possible pathways of toluene oxidation over 0.28Pd/S-1-H was toluene → p-methylbenzoquinone → maleic anhydride, benzoic acid, benzaldehyde → carbon dioxide and water. We conclude that the good dispersion of Pd NPs, high adsorption oxygen species concentration, large toluene adsorption capacity, strong acidity,and more Pd~0 species were responsible for the good catalytic performance of 0.28Pd/S-1-H.展开更多
基金supported by the National Natural Science Committee of China-Liaoning Provincial People's Government Joint Fund(U1908204)National Natural Science Foundation of China(21876006,21976009,and 21961160743)+2 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)Natural Science Foundation of Beijing Municipal Commission of Education(KM201710005004)Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(CIT&TCD201904019)。
文摘Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.
基金supported by the Ph.D.Program Foundation of Ministry of Education of China(20131103110002)the NNSF of China(21377008)+2 种基金National High Technology Research and Development Program(863 Program,2015AA034603)Foundation on the Creative Research Team Con-struction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Plat-form-National Materials Research Base Construction~~
文摘Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.
文摘BACKGROUND: Physiological convulsive thresholds degrade when the brain is in some pathologic states; thus, a level of stimulus that cannot provoke a convulsion may evoke a seizure or epileptic seizure. OBJECTIVE: To investigate the changes that occur in the brain when the physiological convulsive threshold becomes pathological, and to determine what differences occur in pathological and physiological convulsive thresholds during the development of epilepsy. DESIGN: A randomized controlled animal experiment. SETTING: Research Institute of Epilepsy of Shanxi Medical University; Department of Neurology, The Third Hospital of Shanxi Medical University; Research Institute of Function of Shanxi Medical University. MATERIALS: Thirty-six female Wistar rats were selected for this study. The rats were obtained from the experimental animal center of Shanxi Medical University. All laboratory procedures complied with animal ethical standards. The animals were randomly divided into three groups: a strong current group, a weak current group and a control group, with 12 rats in each group. An automatic determinator of seizure threshold was made at Shanxi Medical University and Taiyuan University of Technology. Two bipolar stainless steel stimulating electrodes and an electrode connector (diameter 1.2 ram) were made at Taiyuan University of Technology. METHODS: This study was performed in the laboratory of Research Institute of the Epilepsy of Shanxi Medical University between December 2005 and August 2006. The threshold of localized seizures was measured by performing direct cortical stimulation in rats under anesthesia. After 1 week of post-operative recovery, electric stimulation was started with three different kinds of stimulation. Seizure activity was induced by a ramp-shaped single train of biphasic pulses (50 Hz, total pulse duration of 2 ms, increasing from 0 to 2 000μ A in 15 seconds). The threshold of localized seizures (TLS) has been defined as the minimum current intensity necessary to provoke convulsion of the forelimbs and/or facial muscles. Up to the TLS, if stimulation continued, the current intensity necessary to provoke the generalized seizures is called the threshold of generalized seizures (TGS). If stimulation is continued for about 2 seconds when the TGS is reached, rats still showed generalized clonic activity after stimulation ceased. When seizures stopped, a short period of immobility can be observed. The current intensity is called the threshold of prolonged seizures (TPS). The rats in the strong current group were stimulated up to the current level required to reach the TPS. In the course of stimulation, first, the TLS was recorded, then the TGS, and finally the TPS. The stimulation interval in one session was 10 minutes, repeated twice daily. The rats in the weak current group were only stimulated up to the current levels required to reach the TGS; first, the TLS was recorded and then the TGS was measured at the same time as the strong current group. Control animals were also equipped with a full electrode set and placed in the same conditions, but no stimulation took place, only electroencephalogram (EEG) recording at the same times as the experimental groups. MAIN OUTCOME MEASURES: ① Stimulation of the two experimental groups lasted for 11 weeks and then observation of their behavior and electroencephalogram recording continued for 4 weeks. The control group was also observed over a total of 15 weeks. ② Observing neuronal damage/loss in the hippocampus with a light microscope using a 250x visual field. RESULTS: All 36 Wistar rats were included in the final analysis. At the beginning of the experiment, the convulsive thresholds were all above 1 100 μA, although there were significant individual variations among rats of the same group. Those thresholds quickly declined during the initial 4 weeks of repetitive electrical stimulation. The convulsive thresholds approached a constant level in the 10^th week after commencement of stimulation. There were no significant changes in thresholds when stimulations lasted longer; the convulsive thresholds and the variations in rats of the same group were significantly lower than at the beginning of the trial (P 〈 0.01). An interictal discharge was also recorded in the 3^rd week in the strong current group, and in the 8th week in the weak current group; these discharges were concomitant with neuronal damage and loss in the hippocampus. There was no abnormality observed in the control group. CONCLUSION: These findings indicated that the convulsion threshold in the brain should be divided into two stages: a physiological convulsive threshold and a pathological convulsive threshold (epileptic threshold) The epileptic threshold is created by pathologically acquired factors, which give rise to brain damage. The increase in the intensity of these pathologically acquired factors led to aggravation of damage.
基金supported by the National Natural Science Foundation of China(21677004,21876006,and 21622701)the National High Technology Research and Development Program of China(863 Program,2015AA034603)~~
文摘The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemical properties of these materials.Catalytic performance of the samples was evaluated for methanol combustion.The cubically crystallized Co3O4 support displayed a three-dimensionally ordered mesoporous structure.The supported noble metal nanoparticles(NPs)possessed a surface area of 115.125 m^2/g,with the noble NPs(average size=2.8.4.5 nm)being uniformly dispersed on the surface of meso-Co3O4.Among all of the samples,0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 showed the highest catalytic activity(T50%=100℃and T90%=112℃at a space velocity of 80000 mL(g^–1 h^–1).The partial deactivation of the 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 sample due to water vapor or carbon dioxide introduction was reversible.It is concluded that the good catalytic performance of 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 was associated with its highly dispersed Ag0.75Au1.14Pd alloy NPs,high adsorbed oxygen species concentration,good low-temperature reducibility,and strong interaction between Ag0.75Au1.14Pd alloy NPs and meso-Co3O4.
基金Project supported by the Science Funds from the Ministry of Science and Technology of China(Grant Nos.2014CB921401,2017YFA0304300,2014CB921202,and 2016YFA0300601)the National Natural Science Foundation of China(Grant No.11674376)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300)
文摘We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artificial atom. When driving the cavity to a coherent state, the probe spectrum shows energy level splitting induced by the quantized electromagnetic field in the cavity. This splitting size is related to the coupling strength between the cavity and the artificial atom and, thus, is fixed after the sample is fabricated. This is in contrast to the classical Autler-Townes splitting of a three-level system in which the splitting is proportional to the driving amplitude, which can be continuously changed. Our experiment results show the difference between the classical microwave driving field and the quantum field of the cavity.
文摘Considering the increase of structural disturbance caused by large thrust misalignment and lack of synchronism after installation of the solid booster on the rock,as well as the increase of external disturbance resulting from the installation of the configuration and tail,while also considering the parameter uncertainties,parameter perturbations,unmodeled dynamics and coupling between channels during modeling,this paper proposes the design method for the adaptive control of sliding mode variable structure,based on the model reference. The paper firstly establishes the attitude dynamics model for the solid strap-on launch vehicle; then proposes the design method for the adaptive control of the sliding mode variable structure based on the model reference,implements the design of attitude control system for the three channels respectively,and uses the Lyapunov function to prove the global asymptotic stability; and finally verifies,through numerical simulation,that the control method proposed in this paper can guarantee the attitude stability of rockets in the primary flight phase.
基金supported in part by the General Research Fund CUHK417807 and CUHK418708 from Hong Kong SAR Research Grants Council(RGC)by National Science Foundation of China(NSFC) under grant No.60876029a grant N CUHK417/08 from the NSFC/RGC Joint Research Scheme
基金supported by the National Natural Science Foundation Committee of China-Liaoning Provincial People’s Government Joint Fund(No.U1908204)the National Natural Science Foundation of China(21976009)+2 种基金the National Key R&D Program of China(Nos.2022YFB3506200 and 2022YFB3504100)the Beijing Natural Science Foundation(J210006)the R&D Program of Beijing Municipal Education Commisson(No.KZ202210005011)。
文摘The PdPtVO_(x)/CeO_(2)-ZrO_(2)(PdPtVO_(x)/CZO)catalysts were obtained by using different approaches,and their physical and chemical properties were determined by various techniques.Catalytic activities of these materials in the presence of H_(2)O or SO_(2)were evaluated for the oxidation of ethylbenzene(EB).The PdPtVO_(x)/CZO sample exhibited high catalytic activity,good hydrothermal stability,and reversible sulfur dioxide-poisoning performance,over which the specific reaction rate at 160℃,turnover frequency at 160℃(TOF_(Pd or Pt)),and apparent activation energy were 72.6 mmol/(g_(Pt)·sec)or 124.2 mmol/(g_(Pd)·sec),14.2 sec^(-1)(TOF_(Pt))or 13.1 sec^(-1)(TOF_(Pd)),and 58 k J/mol,respectively.The large EB adsorption capacity,good reducibility,and strong acidity contributed to the good catalytic performance of PdPtVO_(x)/CZO.Catalytic activity of PdPtVO_(x)/CZO decreased when 50 ppm SO_(2)or(1.0 vol.%H_(2)O+50 ppm SO_(2))was added to the feedstock,but was gradually restored to its initial level after the SO_(2)was cut off.The good reversible sulfur dioxide-resistant performance of PdPtVO_(x)/CZO was associated with the facts:(i)the introduction of SO_(2)leads to an increase in surface acidity;(ii)V can adsorb and activate SO_(2),thus accelerating formation of the SO_(x)^(2-)(x=3 or 4)species at the V and CZO sites,weakening the adsorption of sulfur species at the PdPt active sites,and hence protecting the PdPt active sites to be not poisoned by SO_(2).EB oxidation over PdPtVO_(x)/CZO might take place via the route of EB→styrene→phenyl methyl ketone→benzaldehyde→benzoic acid→maleic anhydride→CO_(2)and H_(2)O.
文摘The International Agency for Research on Cancer(IARC)established in 1965 as the cancer agency of the World Health Organization,focuses on cancer research and dedicates to developing strategies for cancer control globally.On February 1,2024,IARC unveiled the latest global cancer burden estimates.
基金Project supported by National Natural Science Foundation of China(21677004,21876006,21622701)National Natural Science Committee of China-Liaoning Provincial People’s Government Joint Fund(U1908204)Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)。
文摘Volatile organic compounds(VOCs),methane,carbon monoxide,soot,automotive exhaust,and nitrogen oxides are harmful to the atmosphere and human health.It is urgent to strictly control their emissions.Heterogeneous catalysis is an effective pathway for the removal of these pollutants,and the critical issue is the development of novel and high-performance catalysts.In this review,we briefly summarize the preparation methods,physicochemical properties,catalytic activities,and related reaction mechanisms for the above pollutants removal of the rare earth oxides,mixed rare earth oxide,rare earth oxidesupported noble metal,and mixed rare earth oxide-supported noble metal catalysts that have been investigated by our group and other researchers.It was found that catalytic performance was associated with the factors,such as specific surface area,pore structure,particle size and dispersion,adsorbed oxygen species concentration,reducibility,reactant activation ability or interaction between metal nanoparticles and support.Furthermore,we also envision the development trend of such a topic in future work.
基金This work was supported by the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (Nos. 2011CB932401, 2011CBA00500, and 2012CB224802), and the National Natural Science Foundation of China (Nos. 21221062, 21131004, and 21390393). The authors thank Electron Microscopy Laboratory of Peking University for the help with HRTEM analysis.
文摘Hexagonal ultrathin WO3 nano-ribbons (HUWNRs) of subnanometer thicknesses, 2-5 nm widths, and lengths of up to several micrometers were prepared by a solvothermal method. The as-prepared HUWNRs grow along the [001] direction, and the main exposed facet is the (720) crystal plane. The HUWNRs exhibit good electrochemical performance as an anode material in lithium ion batteries because of their unique structure. It is believed that these unique materials may be applied in many fields.
基金This work was supported by the National Key R&D Program of China(Nos.2016YFA0202801 and 2017YFA0700101)the National Natural Science Foundation of China(Nos.21872076,21573119,21590792,21890383,and 91645203)+1 种基金Beijing Natural Science Foundation(No.JQ18007)The aberration-corrected TEM studies were conducted at the National Center for Electron Microscopy in Beijing for Information Science and Technology.
文摘For electrocatalytic reduction of CO2 to CO,the stabilization of intermediate COOH^* and the desorption of CO^* are two key steps.Pd can easily stabilize COOH^*,whereas the strong CO^* binding to Pd surface results in severe poisoning,thus lowering catalytic activity and stability for CO2 reduction.On Ag surface,CO^* desorbs readily,while COOH^* requires a relatively high formation energy,leading to a high overpotential.In light of the above issues,we successfully designed the PdAg bimetallic catalyst to circumvent the drawbacks of sole Pd and Ag.The PdAg catalyst with Ag-terminated surface not only shows a much lower overpotential(-0.55 V with CO current density of 1 mA/cm^2)than Ag(−0.76 V),but also delivers a CO/H2 ratio 18 times as high as that for Pd at the potential of-0.75 V vs.RHE.The issue of CO poisoning is significantly alleviated on Ag-terminated PdAg surface,with the stability well retained after 4h electrolysis at-0.75 V vs.RHE.Density functional theory(DFT)calculations reveal that the Ag-terminated PdAg surface features a lowered formation energy for COOH^* and weakened adsorption for CO^*,which both contribute to the enhanced performance for CO2 reduction.
基金financially supported by the National Key R&D Program of China(No.2018YFB1106300)the National Natural Science Foundation of China(No.51604227)the Fundamental Research Funds for the Central Universities(No.31020180QD130)。
文摘The properties of modified conventional wrought aluminum alloys cannot be significantly enhanced by normal post-heat treatment in that the fine-grained strengthening,arising from high cooling rate in SLM,is underutilized.In this work,compared with the normal T6 heat treatment,a novel simple direct aging regime was proposed to maintain the grain-boundary strengthening and to utilize the precipitation strengthening of secondary AlZr.It was found that a heterogeneous grain structure,which consisted of ultrafine equiaxed(~0.82μm)and columnar(~1.80μm)grains at the bottom and top of molten pool,respectively,was formed in the SLM processed sample.After direct aging(DA),the ultrafine grains were maintained and a mass of spherical coherent L1-AlZr particles with a mean radius of approximately1.15 nm was precipitated.In contrast,after solution treatment and aging(STA),a significant grain coarsening occurred in the equiaxed grain region.Meanwhile,the coarsening L1-AlZr particles,nano-sized S phases and GPB zones were detected in the STA sample.This subsequently induced that the yield strength of the DA sample(~435 MPa)was higher than that of the STA sample(~402 MPa)owing to the grain boundary strengthening and precipitation strengthening.Both the STA and DA samples exhibited a higher strength than that of the other SLMed Al-Cu-Mg series alloys;this was comparable to that of the wrought AA2024-T6 alloy(~393 MPa).Both the STA and DA samples exhibited a higher strength than that of the other SLMed Al-Cu-Mg series alloys;this was comparable to that of the wrought AA2024-T6alloy(~393 MPa).
基金supported by the Natural Science Foundation of China(Nos.21622701,21477005,U1507108,and 21676028)National Key R&D Program of China(No.2016YFC0204800)+3 种基金Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201462)Beijing Nova Program(No.Z141109001814106)Beijing Municipal Natural Science Foundation(No.2132015)Natural Science Foundation of Beijing Municipal Commission of Education(No.KM201410005008)
文摘α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m-xylene, acetone/ethyl acetate, acetone/m-xylene and ethyl acetate/m-xylene mixtures was evaluated. It was found that the interaction between Au-Pd alloy nanoparticles and α-MnO2 nanotubes significantly improved the reactivity of lattice oxygen, and the 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst outperformed the α-MnO2 nanotube catalyst in the oxidation of toluene, m-xylene, ethyl acetate and acetone. Over the0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst,(i) toluene oxidation was greatly inhibited in the toluene/m-xylene mixture, while m-xylene oxidation was not influenced;(ii) acetone and ethyl acetate oxidation suffered a minor impact in the acetone/ethyl acetate mixture; and(iii) m-xylene oxidation was enhanced whereas the oxidation of the oxygenated VOCs(volatile organic compounds) was suppressed in the acetone/m-xylene or ethyl acetate/m-xylene mixtures. The competitive adsorption of these typical VOCs on the catalyst surface induced an inhibitive effect on their oxidation, and increasing the temperature favored the oxidation of the VOCs. The mixed VOCs could be completely oxidized into CO2 and H2 O below 320°C at a space velocity of 40,000 m L/(g·hr). The 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst exhibited high catalytic stability as well as good tolerance to water vapor and CO2 in the oxidation of the VOC mixtures. Thus, the α-MnO2 nanotube-supported noble metal alloy catalysts hold promise for the efficient elimination of VOC mixtures.
基金supported by the National Natural Science Foundation of China (No. 20973017, 21077007)the Creative Research Foundation of Beijing University of Technology (No. 00500054R4003, 005000543111501)+2 种基金the HiTech Research and Development Program (863)of China (No. 2009AA063201)the Funding Projectfor Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (No. PHR200907105, PHR201007105,PHR201107104)the Hong Kong Baptist University (FRG2/09-10/023)
文摘Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniques. The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation. It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product. Spherical BiVO4 with porous structures, flower-cluster-like BiVO4, and flower-bundle-like BiVO4 were generated hydrothermally at 100°C with poly(vinyl pyrrolidone) (PVP) and urea (pH = 2) and at 160°C with NaHCO3 (pH = 7 and 8), respectively. The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g) and narrower bandgap energies (2.45-2.49 eV). The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area, narrower bandgap energy, higher surface oxygen vacancy density, and unique porous architecture.
基金supported by the National Natural Science Foundation of China(No.21077007)the Natural Science Foundation of Beijing Municipality(No.2102008)+3 种基金the Discipline and Postgraduate Education Foundation(No.PXM2013 014204 07 000261,005000542513551)the Creative Research Foundation of Beijing University of Technology(No.00500054R4003,005000543111501)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(No.PHR201007105,PHR201107104)the Hong Kong Baptist University for financial support(No.FRG2/09-10/023)
文摘Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-δS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-δS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m^2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi^5+, Bi^3+, V^5+, V^3+, Fe^3+, and Fe^2+ species in y wt.% FeOx/BiVO4-δS0.08. The 1.40 wt.% FeOx/BiVO4-δS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower baudgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-δS0.08.
基金supported by the National Natural Science Foundation of China (No. 21377008)the National High Technology Research and Development Program of China ("863"Program)(No. 2015AA034603)the Foundation of the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions
文摘Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via the KIT-6-templating and polyvinyl alcohol-protected reduction routes, respectively. Physical properties of the samples were characterized, and their photocatalytic activities were evaluated for the photocatalytic oxidation of acetone in the presence of a small amount of H2O2 under visible-light illumination. It was found that the meso-Fe2O3 was rhombohedral in crystal structure. The as-obtained samples displayed a high surface area of 111.0–140.8 m^2/g and a bandgap energy of 1.98–2.12 eV. The Au, Pd and/or Au–Pd alloy nanoparticles(NPs) with a size of 3–4 nm were uniformly dispersed on the surface of the meso-Fe2O3 support. The 0.72 wt.% AuP d1.48/meso-Fe2O3 sample performed the best in the presence of 0.06 mol/L H2O2 aqueous solution, showing a 100% acetone conversion within4 hr of visible-light illumination. It was concluded that the good performance of 0.72 wt.%AuPd(1.48)/meso-Fe2O3 for photocatalytic acetone oxidation was associated with its ordered mesoporous structure, high adsorbed oxygen species concentration, plasmonic resonance effect between AuPd(1.48) NPs and meso-Fe2O3, and effective separation of the photogenerated charge carriers. In addition, the introduction of H2O2 and the involvement of the photo-Fenton process also played important roles in enhancing the photocatalytic activity of 0.72 wt.%AuPd(1.48)/meso-Fe2O3.
基金supported by the National Natural Science Committee of China-Liaoning Provincial People’s Government Joint Fund(No.U1908204)the National Natural Science Foundation of China(Nos.21876006 and 21976009)+2 种基金the Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(No.IDHT20190503)the Natural Science Foundation of Beijing Municipal Commission of Education(No.KM201710005004)the Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(No.CIT&TCD201904019)。
文摘Catalytic combustion is thought as an efficient and economic pathway to remove volatile organic compounds, and its critical issue is the development of high-performance catalytic materials. In this work, we used the in situ synthesis method to prepare the silicalite-1(S-1)-supported Pd nanoparticles(NPs). It is found that the as-prepared catalysts displayed a hexagonal prism morphology and a surface area of 390-440 m^(2)/g. The sample(0.28Pd/S-1-H)derived after reduction at 500°C in 10 vol% H_(2)showed the best catalytic activity for toluene combustion(T50%= 180℃ and T90%= 189℃ at a space velocity of 40,000 m L/(g·hr), turnover frequency(TOFPd) at 160℃ = 3.46 × 10^(-3)sec^(-1), and specific reaction rate at 160℃ = 63.8μmol/(gPd·sec)), with the apparent activation energy(41 k J/mol) obtained over the bestperforming 0.28Pd/S-1-H sample being much lower than those(51-70 k J/mol) obtained over the other samples(0.28Pd/S-1-A derived from calcination at 500℃ in air, 0.26Pd/S-1-im derived from the impregnation route, and 0.27Pd/ZSM-5-H prepared after reduction at 500℃ in 10 vol% H_(2)). Furthermore, the 0.28Pd/S-1-H sample possessed good thermal stability and its partial deactivation due to CO_(2) or H_(2)O introduction was reversible, but SO_(2) addition resulted in an irreversible deactivation. The possible pathways of toluene oxidation over 0.28Pd/S-1-H was toluene → p-methylbenzoquinone → maleic anhydride, benzoic acid, benzaldehyde → carbon dioxide and water. We conclude that the good dispersion of Pd NPs, high adsorption oxygen species concentration, large toluene adsorption capacity, strong acidity,and more Pd~0 species were responsible for the good catalytic performance of 0.28Pd/S-1-H.