Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,...Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.展开更多
Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelera...Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelerates flower senescence and abscission,but the associated mechanisms are poorly understood.In this study,the tandem mass tag(TMT)proteome and label-free quantitative ubiquitome from tree peony cut flowers treated with 20℃for 0 h(RT0),20℃or 28℃for 60 h(RT60 or HT60)were examined based on morphological observation,respectively.Totally,6970 proteins and 1545 lysine ubiquitinated(Kub)sites in 844 proteins were identified.Hydrophilic residues(such as glutamate and aspartate)neighboring the Kub sites were in preference,and 36.01%of the Kub sites were located on the protein surface.The differentially expressed proteins(DEPs)and Kub-DEPs in HT60 vs RT60 were mainly enriched in ribosomal protein,protein biosynthesis,secondary metabolites biosynthesis,flavonoid metabolism,carbohydrate catabolism,and auxin biosynthesis and signaling revealed by GO and KEGG analysis,accompanying the increase of endogenous abscisic acid(ABA)accumulation and decrease of endogenous indoleacetic acid(IAA)level.Additionally,the expression patterns of six enzymes(SAMS,ACO,YUC,CHS,ANS and PFK)putatively with Kub modifications were analyzed by proteome and real-time quantitative RT-PCR.The cell-free degradation assays showed PsSAMS and PsACO proteins could be degraded via the 26 S proteasome system in tree peony flowers.Finally,a working model was proposed for the acceleration of flower senescence and abscission by high temperature.In summary,all results contributed to understanding the mechanism of flower senescence induced by high temperature and prolonging fluorescence in tree peony.展开更多
Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connect...Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connectionmechanism, whereas an efficient data-sharing protocol constitutes as the bedrock of Blockchain network security.In this paper, we propose NodeHunter, an Ethereum network detector implemented through the application ofsimulation technology, which is capable of aggregating all node records within the network and the interconnectednessbetween them. Utilizing this connection information, NodeHunter can procure more comprehensive insightsfor network status analysis compared to preceding detection methodologies. Throughout a three-month period ofunbroken surveillance of the Ethereum network, we obtained an excess of two million node records along with overone hundred million node acquaintances. Analysis of the gathered data revealed that an alarming 49% or more ofthese node records were maliciously forged.展开更多
Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally...Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling(PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene–ethylene–butylene–styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet–visible–near-infrared light(maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17℃ cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.展开更多
MicroRNAs(miRNAs)are non-coding RNAs that interact with target genes and are involved in many physiological processes in plants.miR172-AP2 mainly plays a role in the regulation of f lowering time and floral organ diff...MicroRNAs(miRNAs)are non-coding RNAs that interact with target genes and are involved in many physiological processes in plants.miR172-AP2 mainly plays a role in the regulation of f lowering time and floral organ differentiation.Bud dormancy release is necessary for forcing culture of tree peony in winter,but the mechanism of dormancy regulation is unclear.In this study,we found that a miR172 family member,PsmiR172b,was downregulated during chilling-induced bud dormancy release in tree peony,exhibiting a trend opposite to that of PsTOE3.RNA ligase-mediated(RLM)5-RACE(rapid amplification of cDNA ends)confirmed that miR172b targeted PsTOE3,and the cleavage site was between bases 12(T)and 13(C)within the complementary site to miR172b.The functions of miR172b and PsTOE3 were detected by virus-induced gene silencing(VIGS)and their overexpression in tree peony buds.PsmiR172b negatively regulated bud dormancy release,but PsTOE3 promoted bud dormancy release,and the genes associated with bud dormancy release,including PsEBB1,PsEBB3,PsCYCD,and PsBG6,were upregulated.Further analysis indicated that PsTOE3 directly regulated PsEBB1 by binding to its promoter,and the specific binding site was a C-repeat(ACCGAC).Ectopic expression in Arabidopsis revealed that the PsmiR172b-PsTOE3 module displayed conservative function in regulating f lowering.In conclusion,our results provided a novel insight into the functions of PsmiR172-PsTOE3 and possible molecular mechanism underlying bud dormancy release in tree peony.展开更多
After steam discharge in heavy oil reservoirs,the distribution of temperature,pressure,and permeability in different wells becomes irregular.Flow channels can easily be produced,which affect the sweep efficiency of th...After steam discharge in heavy oil reservoirs,the distribution of temperature,pressure,and permeability in different wells becomes irregular.Flow channels can easily be produced,which affect the sweep efficiency of the oil displacement.Previous studies have shown that the salting-out plugging method can effectively block these channels in high-temperature reservoirs,improve the suction profile,and increase oil production.In the present study,the optimal dosage of the plugging agent is determined taking into account connection transmissibility and inter-well volumes.Together with the connectivity model,a water flooding simulation model is introduced.Moreover,a non-gradient stochastic disturbance algorithm is used to obtain the optimal plugging agent dosage,which provides the basis for the high-temperature salting-out plugging agent adjustment in the field.展开更多
Tree peony bud endodormancy is a common survival strategy similar to many perennial woody plants in winter,and the activation of the GA signaling pathway is the key to breaking endodormancy.GA signal transduction is i...Tree peony bud endodormancy is a common survival strategy similar to many perennial woody plants in winter,and the activation of the GA signaling pathway is the key to breaking endodormancy.GA signal transduction is involved in many physiological processes.Although the GA-GID1-DELLA regulatory module is conserved in many plants,it has a set of specific components that add complexity to the GA response mechanism.DELLA proteins are key switches in GA signaling.Therefore,there is an urgent need to identify the key DELLA proteins involved in tree peony bud dormancy release.In this study,the prolonged chilling increased the content of endogenously active gibberellins.PsRGL1 among three DELLA proteins was significantly downregulated during chilling-and exogenous GA3-induced bud dormancy release by cell-free degradation assay,and a high level of polyubiquitination was detected.Silencing PsRGL1 accelerated bud dormancy release by increasing the expression of the genes associated with dormancy release,including PsCYCD,PsEBB1,PsEBB3,PsBG6,and PsBG9.Three F-box protein family members responded to chilling and GA3 treatments,resulting in PsF-box1 induction.Yeast two-hybrid and BiFC assays indicated that only PsF-box1 could bind to PsRGL1,and the binding site was in the C-terminal domain.PsF-box1 overexpression promoted dormancy release and upregulated the expression of the dormancy-related genes.In addition,yeast two-hybrid and pull-down assays showed that PsF-box1 also interacted with PsSKP1 to form an E3 ubiquitin ligase.These findings enriched the molecular mechanism of the GA signaling pathway during dormancy release,and enhanced the understanding of tree peony bud endodormancy.展开更多
The major impediment to the additional industrialization of water splitting is the high cost of the co-catalyst made of noble metals and the sacrificial reagent. A binary photocatalytic system, consisting of B-doped g...The major impediment to the additional industrialization of water splitting is the high cost of the co-catalyst made of noble metals and the sacrificial reagent. A binary photocatalytic system, consisting of B-doped g-C_(3)N_(4) nanosheets(Cu_(20)@BCN-X) and atomically accurate copper clusters, is designed in this study. The copper clusters serve as co-catalysts for H_(2) evolution and exhibit Pt-like activity, whereas the nanosheets serve as carriers and semiconductor components for O_(2) evolution. Such binary system, created using simple techniques, demonstrates hydrogen bonding interactions that promote synergistic effects and efficient binding and charge transfer across the interface between the two components. Band position manipulation of carbon nitride nanosheets demonstrates a Z-scheme charge transfer mechanism between the nanosheets and copper clusters. This photocatalytic system can accomplish the photocatalytic overall water splitting process(259.9 μmol g^(-1)h^(-1)of H_(2) and 129.4 μmol g^(-1)h^(-1)of O_(2)) without using sacrificial agents or noble metal co-catalysts. This work lays the foundation for the design of overall water splitting catalysts by precisely manipulating the energy levels, and it also paves the way for commercialized photocatalytic catalysts that do not require noble metals or sacrificial chemicals.展开更多
Nucleic acid drugs are emerging as a novel biotherapeutic modality for disease treatment,targeting nucleic acids to regulate the protein translation process and thereby facilitating disease management.They hold signif...Nucleic acid drugs are emerging as a novel biotherapeutic modality for disease treatment,targeting nucleic acids to regulate the protein translation process and thereby facilitating disease management.They hold significant promise in biomedical applications and treatment avenues.Given their negative charge,high molecular weight,and hydrophilic properties,nucleic acid drugs require carriers to traverse multiple biological barriers and facilitate intracellular delivery.Cationic material-based carriers present an unprecedented opportunity to address these challenges through electrostatic interactions with nucleic acids.However,concerns regarding the biosafety and cytotoxic responses of cationic materials have emerged in early clinical studies.As a result,the use of non-cationic polymer carriers,by controlling or circumventing the use of cationic materials,represents a promising approach for nucleic acid delivery.In this review,we highlight various designs of non-cationic polymer carriers that go beyond the principle of electrostatic interactions,including conjugation,chemical bonding,physical crosslinking,hydrophobic interactions,and coordination bonding with nucleic acids.Additionally,we discuss strategies for enhancing the efficiency of nucleic acid delivery and therapeutic effects of non-cationic polymer carriers,focusing on targeted delivery,cellular internalization,and endosomal escape.展开更多
Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device pe...Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device performance,such as perovskite solar cells(PSCs).Herein,we successfully enhanced the electric properties and morphology of phenyl-C61-butyric acid methyl ester(PCBM)by n-doping it with a benzimidazoline derivative,9-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-julolidine(JLBI-H)via a solution process.We found the n-doping can not only improve the conductivity and optimize the band alignment but also enable the PCBM to have a constantly strong charge extraction ability in a wide temperature from 173 to 373 K,which guarantees a stable photovoltaic performance of the corresponding PSCs under a wide range of operating temperatures.With the JLBI-H-doped PCBM,we improved the efficiency from 17.9%to 19.8%,along with enhanced stability of the nonencapsulated devices following the aging protocol of ISOS-D-1.展开更多
The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to...The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to abundant wind and solar energy resources.This paper proposes a secondary frequency control(SFC)strategy that allows industrial power grids to provide emergency high-voltage direct current(HVDC)power support(EDCPS)for emergency to a system requiring power support through a voltage source converter(VSC)HVDC link.An architecture including multiple model predictive control(MPC)controllers with periodic communication is designed to simultaneously obtain optimized EDCPS capacity and minimize adverse effects on the providing power support(PPS)system.Moreover,a model of a virtual power plant(VPP)containing aluminum smelter loads(ASLs)and a high penetration of wind power is established for the PPS system.The flexibility and controllability of the VPP are improved by the demand response of the ASLs.The uncertainty associated with wind power is considered by chance constraints.The effectiveness of the proposed strategy is verified by simulation results using the data of an actual industrial power grid in Inner Mongolia,China.The DC voltage of the VSCs and the DC in the potlines of the ASLs are also investigated in the simulation.展开更多
Nowadays,searching for the materials with multiple magneto-functional properties and good mechanical properties is vital in various fields,such as solid-state refrigeration,magnetic actuators,magnetic sensors and inte...Nowadays,searching for the materials with multiple magneto-functional properties and good mechanical properties is vital in various fields,such as solid-state refrigeration,magnetic actuators,magnetic sensors and intelligent/smart devices.In this work,the magnetic-field-induced metamagnetic reverse martensitic transformation(MFIRMT)from paramagnetic martensite to ferromagnetic austenite with multiple magneto-responsive effects is realized in Fe-doped Co-V-Ga Heusler alloys by manipulating the magnetic ordering.The martensitic transformation temperature Tmreduces quasi-linearly with increasing Fe-content.In strikingly contrast with the Fe-free alloys,the magnetization difference(M')across martensitic transformation increases by three orders of magnitude for Fe-doped alloys.The increased M'should be ascribed to the reduction of Tm,almost unchanged Curie temperature of austenite and the increased magnetic moment in the samples with higher Fe-content.The large M'provides strong driving force to realize the MFIRMT and accordingly multiple magneto-responsive effects,such as magnetocaloric,magnetoresistance and magnetostriction effects.Meanwhile,giant Vickers hardness of 518 HV and compressive strength of 1423 MPa are achieved.Multiple magneto-responsive effects with exceptional mechanical properties make these alloys great potential candidates for applications in many fields.展开更多
Global Navigation Satellite System precise positioning using carrier phase measurements requires reliable ambiguity resolution.It is challenging to obtain continuous precise positions with a high ambiguity fixing rate...Global Navigation Satellite System precise positioning using carrier phase measurements requires reliable ambiguity resolution.It is challenging to obtain continuous precise positions with a high ambiguity fixing rate under a wide range of dynamic scenes with a single base station,thus the positioning accuracy will be degraded seriously.The Forward-Backward Combination(FBC),a common post-processing smoothing method,is simply the weighted average of the positions of forward and backward filtering.When the ambiguity fixing rate of the one-way(forward or backward)filter is low,the FBC method usually cannot provide accurate and reliable positioning results.Consequently,this paper proposed a method to improve the accuracy of positions by integrating forward and backward AR,which combines the forward and backward ambiguities instead of positions-referred to as ambiguity domain-based integration(ADBI).The purpose of ADBI is to find a reliable correct integer ambiguities by making full use of the integer nature of ambiguities and integrating the ambiguities from the forward and backward filters.Once the integer ambiguities are determined correctly and reliably with ADBI,then the positions are updated with the fixing ambiguities constrained,in which more accurate positions with high confidence can be achieved.The effectiveness of the proposed approach is validated with airborne and car-borne dynamic experiments.The experimental results demonstrated that much better accuracy of position and higher ambiguity-fixed success rate can be achieved than the traditional post-processing method.展开更多
Successful global cities present a spectrum of development strategies but share the benefit of the reciprocal dynamics between tailored education systems and matching labour markets.This paper examines burgeoning citi...Successful global cities present a spectrum of development strategies but share the benefit of the reciprocal dynamics between tailored education systems and matching labour markets.This paper examines burgeoning cities in China and investigates the effects of the heterogeneous educational trajectories of young migrant workers in urban China on their labour market performance.Drawing on the National Migrant Dynamics Monitoring Survey,this paper finds striking wage variations among the young migrant population.Migrant workers who attended high schools in current receiving cities earned less than their counterparts who received senior-secondary education elsewhere.Students following the academic track were better off than students following the vocational track.To further explore what has prevented the urban labour market from rewarding migrants who studied in a receiving city,where the education system is expected to better cater to the city’s specific industrial needs,we tested and found evidence of the mediating effects of job industry and occupation.In addition to engaging with empirical debates in the field,this paper develops a theoretical framework to model how the qualitative attributes of an education system affect wage variations among migrant workers.展开更多
Although local governments in China are encouraging the development of blockchain technology,the regional clustering of the blockchain industry still shows obvious differentiation.We use blockchain industry-related da...Although local governments in China are encouraging the development of blockchain technology,the regional clustering of the blockchain industry still shows obvious differentiation.We use blockchain industry-related data during the period 2012–2019 to calculate the blockchain industrial clustering of each province in China.We find that the clustering state of the blockchain industry is quite different from the state of other industries and the situation of economic development in the same region.In less-developed regions,the blockchain industry is more prominent,which may benefit from local government management.We conduct an empirical analysis on the relationship between blockchain industrial clustering and regional government management using the generalized method of moments(GMM)of a dynamic panel.The results show that government management has a positive promoting effect on local blockchain industrial clustering as a whole,among which the promotion from economy,technology,infrastructure and policy is more significant.展开更多
基金financially supported by the National Natural Science Foundation of China(52373079,52161135302,52233006)the China Postdoctoral Science Foundation(2022M711355)the Natural Science Foundation of Jiangsu Province(BK20221540).
文摘Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
基金supported by National Natural Science Foundation of China(Grant Nos.32072614 and 31972452)Shandong Provincial Natural Science Foundation(Grant Nos.ZR2020MC146 and ZR2020QC160)Seed improvement project of Shandong Province(Grant No.2020LZGC011-1-4)。
文摘Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelerates flower senescence and abscission,but the associated mechanisms are poorly understood.In this study,the tandem mass tag(TMT)proteome and label-free quantitative ubiquitome from tree peony cut flowers treated with 20℃for 0 h(RT0),20℃or 28℃for 60 h(RT60 or HT60)were examined based on morphological observation,respectively.Totally,6970 proteins and 1545 lysine ubiquitinated(Kub)sites in 844 proteins were identified.Hydrophilic residues(such as glutamate and aspartate)neighboring the Kub sites were in preference,and 36.01%of the Kub sites were located on the protein surface.The differentially expressed proteins(DEPs)and Kub-DEPs in HT60 vs RT60 were mainly enriched in ribosomal protein,protein biosynthesis,secondary metabolites biosynthesis,flavonoid metabolism,carbohydrate catabolism,and auxin biosynthesis and signaling revealed by GO and KEGG analysis,accompanying the increase of endogenous abscisic acid(ABA)accumulation and decrease of endogenous indoleacetic acid(IAA)level.Additionally,the expression patterns of six enzymes(SAMS,ACO,YUC,CHS,ANS and PFK)putatively with Kub modifications were analyzed by proteome and real-time quantitative RT-PCR.The cell-free degradation assays showed PsSAMS and PsACO proteins could be degraded via the 26 S proteasome system in tree peony flowers.Finally,a working model was proposed for the acceleration of flower senescence and abscission by high temperature.In summary,all results contributed to understanding the mechanism of flower senescence induced by high temperature and prolonging fluorescence in tree peony.
基金the National Key Research and Development Program of China(No.2020YFB1005805)Peng Cheng Laboratory Project(Grant No.PCL2021A02)+2 种基金Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies(2022B1212010005)Shenzhen Basic Research(General Project)(No.JCYJ20190806142601687)Shenzhen Stable Supporting Program(General Project)(No.GXWD20201230155427003-20200821160539001).
文摘Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connectionmechanism, whereas an efficient data-sharing protocol constitutes as the bedrock of Blockchain network security.In this paper, we propose NodeHunter, an Ethereum network detector implemented through the application ofsimulation technology, which is capable of aggregating all node records within the network and the interconnectednessbetween them. Utilizing this connection information, NodeHunter can procure more comprehensive insightsfor network status analysis compared to preceding detection methodologies. Throughout a three-month period ofunbroken surveillance of the Ethereum network, we obtained an excess of two million node records along with overone hundred million node acquaintances. Analysis of the gathered data revealed that an alarming 49% or more ofthese node records were maliciously forged.
基金financially supported by the National Natural Science Foundation of China (21875033, 52161135302)the Research Foundation Flanders (G0F2322N)+4 种基金the China Postdoctoral Science Foundation (2022M711355)the Natural Science Foundation of Jiangsu Province (BK20221540)the Shanghai Scientific and Technological Innovation Project (18JC1410600)the Program of the Shanghai Academic Research Leader (17XD1400100)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_2317)。
文摘Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling(PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene–ethylene–butylene–styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet–visible–near-infrared light(maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17℃ cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.
基金supported by grants fromNational Natural Science Foundation of China(31872145 and 31972452)the National Key R&D Programof China(2018YFD1000403).
文摘MicroRNAs(miRNAs)are non-coding RNAs that interact with target genes and are involved in many physiological processes in plants.miR172-AP2 mainly plays a role in the regulation of f lowering time and floral organ differentiation.Bud dormancy release is necessary for forcing culture of tree peony in winter,but the mechanism of dormancy regulation is unclear.In this study,we found that a miR172 family member,PsmiR172b,was downregulated during chilling-induced bud dormancy release in tree peony,exhibiting a trend opposite to that of PsTOE3.RNA ligase-mediated(RLM)5-RACE(rapid amplification of cDNA ends)confirmed that miR172b targeted PsTOE3,and the cleavage site was between bases 12(T)and 13(C)within the complementary site to miR172b.The functions of miR172b and PsTOE3 were detected by virus-induced gene silencing(VIGS)and their overexpression in tree peony buds.PsmiR172b negatively regulated bud dormancy release,but PsTOE3 promoted bud dormancy release,and the genes associated with bud dormancy release,including PsEBB1,PsEBB3,PsCYCD,and PsBG6,were upregulated.Further analysis indicated that PsTOE3 directly regulated PsEBB1 by binding to its promoter,and the specific binding site was a C-repeat(ACCGAC).Ectopic expression in Arabidopsis revealed that the PsmiR172b-PsTOE3 module displayed conservative function in regulating f lowering.In conclusion,our results provided a novel insight into the functions of PsmiR172-PsTOE3 and possible molecular mechanism underlying bud dormancy release in tree peony.
基金supported by China Postdoctoral Science Foundation(No.2021M702304)Shandong Provincial Natural Science Foundation Youth Fund(No.ZR2021QE260).
文摘After steam discharge in heavy oil reservoirs,the distribution of temperature,pressure,and permeability in different wells becomes irregular.Flow channels can easily be produced,which affect the sweep efficiency of the oil displacement.Previous studies have shown that the salting-out plugging method can effectively block these channels in high-temperature reservoirs,improve the suction profile,and increase oil production.In the present study,the optimal dosage of the plugging agent is determined taking into account connection transmissibility and inter-well volumes.Together with the connectivity model,a water flooding simulation model is introduced.Moreover,a non-gradient stochastic disturbance algorithm is used to obtain the optimal plugging agent dosage,which provides the basis for the high-temperature salting-out plugging agent adjustment in the field.
基金This work was supported by grants fromNational Natural Science Foundation of China(31872145,31972452)the Agricultural Seed Engineering Project of Shandong Province(2020LZGC011-1-4)the National Key R&D Program of China(2018YFD1000403).
文摘Tree peony bud endodormancy is a common survival strategy similar to many perennial woody plants in winter,and the activation of the GA signaling pathway is the key to breaking endodormancy.GA signal transduction is involved in many physiological processes.Although the GA-GID1-DELLA regulatory module is conserved in many plants,it has a set of specific components that add complexity to the GA response mechanism.DELLA proteins are key switches in GA signaling.Therefore,there is an urgent need to identify the key DELLA proteins involved in tree peony bud dormancy release.In this study,the prolonged chilling increased the content of endogenously active gibberellins.PsRGL1 among three DELLA proteins was significantly downregulated during chilling-and exogenous GA3-induced bud dormancy release by cell-free degradation assay,and a high level of polyubiquitination was detected.Silencing PsRGL1 accelerated bud dormancy release by increasing the expression of the genes associated with dormancy release,including PsCYCD,PsEBB1,PsEBB3,PsBG6,and PsBG9.Three F-box protein family members responded to chilling and GA3 treatments,resulting in PsF-box1 induction.Yeast two-hybrid and BiFC assays indicated that only PsF-box1 could bind to PsRGL1,and the binding site was in the C-terminal domain.PsF-box1 overexpression promoted dormancy release and upregulated the expression of the dormancy-related genes.In addition,yeast two-hybrid and pull-down assays showed that PsF-box1 also interacted with PsSKP1 to form an E3 ubiquitin ligase.These findings enriched the molecular mechanism of the GA signaling pathway during dormancy release,and enhanced the understanding of tree peony bud endodormancy.
基金supported by the National Natural Science Foundation of China (21971085)the Natural Science Foundation of Shandong Province (ZR2021MB008)the Jinan City “New University 20” Project (202228113)。
文摘The major impediment to the additional industrialization of water splitting is the high cost of the co-catalyst made of noble metals and the sacrificial reagent. A binary photocatalytic system, consisting of B-doped g-C_(3)N_(4) nanosheets(Cu_(20)@BCN-X) and atomically accurate copper clusters, is designed in this study. The copper clusters serve as co-catalysts for H_(2) evolution and exhibit Pt-like activity, whereas the nanosheets serve as carriers and semiconductor components for O_(2) evolution. Such binary system, created using simple techniques, demonstrates hydrogen bonding interactions that promote synergistic effects and efficient binding and charge transfer across the interface between the two components. Band position manipulation of carbon nitride nanosheets demonstrates a Z-scheme charge transfer mechanism between the nanosheets and copper clusters. This photocatalytic system can accomplish the photocatalytic overall water splitting process(259.9 μmol g^(-1)h^(-1)of H_(2) and 129.4 μmol g^(-1)h^(-1)of O_(2)) without using sacrificial agents or noble metal co-catalysts. This work lays the foundation for the design of overall water splitting catalysts by precisely manipulating the energy levels, and it also paves the way for commercialized photocatalytic catalysts that do not require noble metals or sacrificial chemicals.
基金supported by the National Natural Science Foundation of China(U22A20156,52173121)Guangdong Basic and Applied Basic Research Foundation(2024A1515011130).
文摘Nucleic acid drugs are emerging as a novel biotherapeutic modality for disease treatment,targeting nucleic acids to regulate the protein translation process and thereby facilitating disease management.They hold significant promise in biomedical applications and treatment avenues.Given their negative charge,high molecular weight,and hydrophilic properties,nucleic acid drugs require carriers to traverse multiple biological barriers and facilitate intracellular delivery.Cationic material-based carriers present an unprecedented opportunity to address these challenges through electrostatic interactions with nucleic acids.However,concerns regarding the biosafety and cytotoxic responses of cationic materials have emerged in early clinical studies.As a result,the use of non-cationic polymer carriers,by controlling or circumventing the use of cationic materials,represents a promising approach for nucleic acid delivery.In this review,we highlight various designs of non-cationic polymer carriers that go beyond the principle of electrostatic interactions,including conjugation,chemical bonding,physical crosslinking,hydrophobic interactions,and coordination bonding with nucleic acids.Additionally,we discuss strategies for enhancing the efficiency of nucleic acid delivery and therapeutic effects of non-cationic polymer carriers,focusing on targeted delivery,cellular internalization,and endosomal escape.
基金National Key Research and Development Plan,Grant/Award Number:2019YFE0107200National Natural Science Foundation of China,Grant/Award Numbers:22075221,52002302,91963209+4 种基金Key Research and Development Project of Shanxi Province,Grant/Award Number:202202060301003Hubei Provincial Natural Science Foundation of China,Grant/Award Number:2022CFB1000Knowledge Innovation Program of Wuhan-Shuguang Project,Grant/Award Number:2023010201020367State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology),Grant/Award Number:2022-KF-17Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science,ICT,and Future Planning,Grant/Award Numbers:2019K1A3A1A61091347,2021M3H4A1A02051234。
文摘Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device performance,such as perovskite solar cells(PSCs).Herein,we successfully enhanced the electric properties and morphology of phenyl-C61-butyric acid methyl ester(PCBM)by n-doping it with a benzimidazoline derivative,9-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-julolidine(JLBI-H)via a solution process.We found the n-doping can not only improve the conductivity and optimize the band alignment but also enable the PCBM to have a constantly strong charge extraction ability in a wide temperature from 173 to 373 K,which guarantees a stable photovoltaic performance of the corresponding PSCs under a wide range of operating temperatures.With the JLBI-H-doped PCBM,we improved the efficiency from 17.9%to 19.8%,along with enhanced stability of the nonencapsulated devices following the aging protocol of ISOS-D-1.
基金supported by the National Natural Science Foundation of China(No.52077125)the Science and Technology Program of the State Grid Shandong Electric Power Company(No.2020A-126)。
文摘The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to abundant wind and solar energy resources.This paper proposes a secondary frequency control(SFC)strategy that allows industrial power grids to provide emergency high-voltage direct current(HVDC)power support(EDCPS)for emergency to a system requiring power support through a voltage source converter(VSC)HVDC link.An architecture including multiple model predictive control(MPC)controllers with periodic communication is designed to simultaneously obtain optimized EDCPS capacity and minimize adverse effects on the providing power support(PPS)system.Moreover,a model of a virtual power plant(VPP)containing aluminum smelter loads(ASLs)and a high penetration of wind power is established for the PPS system.The flexibility and controllability of the VPP are improved by the demand response of the ASLs.The uncertainty associated with wind power is considered by chance constraints.The effectiveness of the proposed strategy is verified by simulation results using the data of an actual industrial power grid in Inner Mongolia,China.The DC voltage of the VSCs and the DC in the potlines of the ASLs are also investigated in the simulation.
基金financially supported by the Key Project of Natural Science Foundation of Jiangxi Province(No.20192ACB20004)the National Natural Science Foundation of China(No.51671097)the Open Project awarded by National Key Laboratory State Microstructures Physics(No.M32037)。
文摘Nowadays,searching for the materials with multiple magneto-functional properties and good mechanical properties is vital in various fields,such as solid-state refrigeration,magnetic actuators,magnetic sensors and intelligent/smart devices.In this work,the magnetic-field-induced metamagnetic reverse martensitic transformation(MFIRMT)from paramagnetic martensite to ferromagnetic austenite with multiple magneto-responsive effects is realized in Fe-doped Co-V-Ga Heusler alloys by manipulating the magnetic ordering.The martensitic transformation temperature Tmreduces quasi-linearly with increasing Fe-content.In strikingly contrast with the Fe-free alloys,the magnetization difference(M')across martensitic transformation increases by three orders of magnitude for Fe-doped alloys.The increased M'should be ascribed to the reduction of Tm,almost unchanged Curie temperature of austenite and the increased magnetic moment in the samples with higher Fe-content.The large M'provides strong driving force to realize the MFIRMT and accordingly multiple magneto-responsive effects,such as magnetocaloric,magnetoresistance and magnetostriction effects.Meanwhile,giant Vickers hardness of 518 HV and compressive strength of 1423 MPa are achieved.Multiple magneto-responsive effects with exceptional mechanical properties make these alloys great potential candidates for applications in many fields.
基金the National Science Fund for Distinguished Young Scholars(Grant No.41825009)the Funds for Creative Research Groups of China(Grant No.41721003)Changjiang Scholars program.
文摘Global Navigation Satellite System precise positioning using carrier phase measurements requires reliable ambiguity resolution.It is challenging to obtain continuous precise positions with a high ambiguity fixing rate under a wide range of dynamic scenes with a single base station,thus the positioning accuracy will be degraded seriously.The Forward-Backward Combination(FBC),a common post-processing smoothing method,is simply the weighted average of the positions of forward and backward filtering.When the ambiguity fixing rate of the one-way(forward or backward)filter is low,the FBC method usually cannot provide accurate and reliable positioning results.Consequently,this paper proposed a method to improve the accuracy of positions by integrating forward and backward AR,which combines the forward and backward ambiguities instead of positions-referred to as ambiguity domain-based integration(ADBI).The purpose of ADBI is to find a reliable correct integer ambiguities by making full use of the integer nature of ambiguities and integrating the ambiguities from the forward and backward filters.Once the integer ambiguities are determined correctly and reliably with ADBI,then the positions are updated with the fixing ambiguities constrained,in which more accurate positions with high confidence can be achieved.The effectiveness of the proposed approach is validated with airborne and car-borne dynamic experiments.The experimental results demonstrated that much better accuracy of position and higher ambiguity-fixed success rate can be achieved than the traditional post-processing method.
文摘Successful global cities present a spectrum of development strategies but share the benefit of the reciprocal dynamics between tailored education systems and matching labour markets.This paper examines burgeoning cities in China and investigates the effects of the heterogeneous educational trajectories of young migrant workers in urban China on their labour market performance.Drawing on the National Migrant Dynamics Monitoring Survey,this paper finds striking wage variations among the young migrant population.Migrant workers who attended high schools in current receiving cities earned less than their counterparts who received senior-secondary education elsewhere.Students following the academic track were better off than students following the vocational track.To further explore what has prevented the urban labour market from rewarding migrants who studied in a receiving city,where the education system is expected to better cater to the city’s specific industrial needs,we tested and found evidence of the mediating effects of job industry and occupation.In addition to engaging with empirical debates in the field,this paper develops a theoretical framework to model how the qualitative attributes of an education system affect wage variations among migrant workers.
基金supported by The National Key Research and Development Program of China (2020YFB1006104)the Financial support from the Innovation and Talent Base for Digital Technology and Finance (B21038).
文摘Although local governments in China are encouraging the development of blockchain technology,the regional clustering of the blockchain industry still shows obvious differentiation.We use blockchain industry-related data during the period 2012–2019 to calculate the blockchain industrial clustering of each province in China.We find that the clustering state of the blockchain industry is quite different from the state of other industries and the situation of economic development in the same region.In less-developed regions,the blockchain industry is more prominent,which may benefit from local government management.We conduct an empirical analysis on the relationship between blockchain industrial clustering and regional government management using the generalized method of moments(GMM)of a dynamic panel.The results show that government management has a positive promoting effect on local blockchain industrial clustering as a whole,among which the promotion from economy,technology,infrastructure and policy is more significant.