Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can b...Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.展开更多
Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital mic...Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-lasting power for advanced microelectronic devices.To date,while many seminal works have been reviewed the topic of microbatteries,there is no work that systematically summarizes the development of IMBs of high energy density and stable voltage platforms from fabrication,functionalization to integration.The current review focuses on the most recent progress in IMBs,discussing advanced micromachining techniques with compatible features to construct high-performance IMBs with smart functions and intelligent integrated systems.The future opportunities and challenges of IMBs are also highlighted,calling for more efforts in this dynamic and fast-growing research field.展开更多
With the swift advancement of neural networks and their expanding applications in many fields, optical neural networks have gradually become a feasible alternative to electrical neural networks due to their parallelis...With the swift advancement of neural networks and their expanding applications in many fields, optical neural networks have gradually become a feasible alternative to electrical neural networks due to their parallelism, high speed, low latency, and power consumption. Nonetheless, optical nonlinearity is hard to realize in free-space optics, which restricts the potential of the architecture.展开更多
With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate perf...With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate performance,high power density,long cycling lifetime,easy fabrication,and integration,multifunctional planar microsupercapacitors(PMSCs)are deemed as one of the ideal micropower sources for next-generation flexible on-chip electronics.Therefore,we offer a comprehensive overview of the recent progress regarding multifunctional devices based on PMSCs,including stretchable,self-healing,stimulus-responsive,thermosensitive,biodegradable,and temperaturetolerant microdevices.We also emphasize the unique applications of multifunctionally integrated PMSCs in the construction of self-powered and sensor-integrated systems in terms of multifunctional operation modes.Finally,the key challenges and future prospects related to these multifunctional devices are discussed to stimulate further research in this flourishing field.展开更多
Rechargeable aqueous zinc-ion batteries are recently gaining incremental attention because of low cost and material abundance,but their development is plagued by limited choices of cathode materials with satisfactory ...Rechargeable aqueous zinc-ion batteries are recently gaining incremental attention because of low cost and material abundance,but their development is plagued by limited choices of cathode materials with satisfactory cycling performance.The polyoxometalates perform formidable redox stability and able to participate in multi-electron transfer,which was well-suited for energy storage.Herein,a bicomponent polyoxometalate-derivative KNiVO(K_(2)[Ni(H_(2)O)_(6)]_(2)[V_(10)O_(28)]·_(4)H_(2)O polyoxometalates after annealing)is firstly demonstrated as a cathode material for aqueous ZIBs.The layered KV_(3)O_(8)(KVO)In the bi-component material constitutes Zn^(2+) migration and storage channels(K^(+) were substantially replaced by Zn^(2+) in the activation phase),and the three-dimensional NiV_(3)O_(8)(NiVO)part acts as skeleton to stabilize the ion channels,which assist the cell to demonstrate a high-rate capacity and specific energy of229.4 mAh/g and satisfactory cyclability(capacity retention of 99.1%after 4500 cycles at a current density of 4 A/g).These results prove the feasibility of POM as cathode materials precursor and put forward a novel pattern of the Zn^(2+)storage mechanism in the activated-KNiVO clusters,which also provide a new route for selecting or designing high-performance cathode for aqueous ZIBs and other advanced battery systems.展开更多
基金the Natural Science Foundation of Beijing Municipality(2222075)National Natural Science Foundation of China(22279010,21671020,51673026)Analysis&Testing Center,Beijing Institute of Technology.
文摘Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
基金financial support from the National Natural Science Foundation of China(NSFC)(22109009)the China Postdoctoral Science Foundation(2020M680376)+2 种基金the National Key R&D Program of China(2017YFB1104300)the NSFC(21975027,22035005,52073159)the NSFC-STINT(21911530143)。
文摘Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-lasting power for advanced microelectronic devices.To date,while many seminal works have been reviewed the topic of microbatteries,there is no work that systematically summarizes the development of IMBs of high energy density and stable voltage platforms from fabrication,functionalization to integration.The current review focuses on the most recent progress in IMBs,discussing advanced micromachining techniques with compatible features to construct high-performance IMBs with smart functions and intelligent integrated systems.The future opportunities and challenges of IMBs are also highlighted,calling for more efforts in this dynamic and fast-growing research field.
基金National Natural Science Foundation of China(62135009)Beijing Municipal Science and Technology Commission,Administrative Commission of Zhongguancun Science Park (Z221100005322010)。
文摘With the swift advancement of neural networks and their expanding applications in many fields, optical neural networks have gradually become a feasible alternative to electrical neural networks due to their parallelism, high speed, low latency, and power consumption. Nonetheless, optical nonlinearity is hard to realize in free-space optics, which restricts the potential of the architecture.
基金the National Natural Science Foundation of China(NSFC,22109009,21975027,22035005,and 52073159)China Postdoctoral Science Foundation(2020M680376)+1 种基金the National Key R&D Program of China(2017YFB1104300)the NSFCSTINT(21911530143).
文摘With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate performance,high power density,long cycling lifetime,easy fabrication,and integration,multifunctional planar microsupercapacitors(PMSCs)are deemed as one of the ideal micropower sources for next-generation flexible on-chip electronics.Therefore,we offer a comprehensive overview of the recent progress regarding multifunctional devices based on PMSCs,including stretchable,self-healing,stimulus-responsive,thermosensitive,biodegradable,and temperaturetolerant microdevices.We also emphasize the unique applications of multifunctionally integrated PMSCs in the construction of self-powered and sensor-integrated systems in terms of multifunctional operation modes.Finally,the key challenges and future prospects related to these multifunctional devices are discussed to stimulate further research in this flourishing field.
基金supported by the Natural Science Foundation of Hunan Province(No.2020JJ4684)the Fundamental Research Funds for the Central Universities of Central South University(No.2021zzts0522)the Recruitment Program of Global Youth Experts。
文摘Rechargeable aqueous zinc-ion batteries are recently gaining incremental attention because of low cost and material abundance,but their development is plagued by limited choices of cathode materials with satisfactory cycling performance.The polyoxometalates perform formidable redox stability and able to participate in multi-electron transfer,which was well-suited for energy storage.Herein,a bicomponent polyoxometalate-derivative KNiVO(K_(2)[Ni(H_(2)O)_(6)]_(2)[V_(10)O_(28)]·_(4)H_(2)O polyoxometalates after annealing)is firstly demonstrated as a cathode material for aqueous ZIBs.The layered KV_(3)O_(8)(KVO)In the bi-component material constitutes Zn^(2+) migration and storage channels(K^(+) were substantially replaced by Zn^(2+) in the activation phase),and the three-dimensional NiV_(3)O_(8)(NiVO)part acts as skeleton to stabilize the ion channels,which assist the cell to demonstrate a high-rate capacity and specific energy of229.4 mAh/g and satisfactory cyclability(capacity retention of 99.1%after 4500 cycles at a current density of 4 A/g).These results prove the feasibility of POM as cathode materials precursor and put forward a novel pattern of the Zn^(2+)storage mechanism in the activated-KNiVO clusters,which also provide a new route for selecting or designing high-performance cathode for aqueous ZIBs and other advanced battery systems.