Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim...Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.展开更多
Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan...Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan is the main type of polysaccharide from natural mushroom,which has potential medicinal prospects.Nevertheless,the antidiabetic property of mannogalactoglucan in T1DM has not been fully elucidated.In this study,we obtained the neutral fraction of alkali-soluble Armillaria mellea polysaccharide(AAMP-N) with the structure of mannogalactoglucan from the fruiting body of A.mellea and investigated the potential therapeutic value of AAMP-N in T1DM.We demonstrated that AAMP-N lowered blood glucose and improved diabetes symptoms in T1DM mice.AAMP-N activated unfolded protein response(UPR) signaling pathway to maintain ER protein folding homeostasis and promote insulin secretion in vivo.Besides that,AAMP-N promoted insulin synthesis via upregulating the expression of transcription factors,increased Ca^(2+) signals to stimulate intracellular insulin secretory vesicle transport via activating calcium/calmodulin-dependent kinase Ⅱ(CamkⅡ) and cAMP/PKA signals,and enhanced insulin secretory vesicle fusion with the plasma membrane via vesicle-associated membrane protein 2(VAMP2).Collectively,these studies demonstrated that the therapeutic potential of AAMP-N on pancreatic islets function,indicating that mannogalactoglucan could be natural nutraceutical used for the treatment of T1DM.展开更多
Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is...Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.展开更多
Objective: This study aims to determine the mediating effects of psychological empowerment on abusive supervision and turnover intention as perceived by nurses to provide information to change the status of nurse turn...Objective: This study aims to determine the mediating effects of psychological empowerment on abusive supervision and turnover intention as perceived by nurses to provide information to change the status of nurse turnover.Methods: A cross-sectional survey (a questionnaire examining perceptions of abusive supervision,measurement of psychological empowerment,and questionnaire for turnover intention) was used to collect data.A total of 1127 clinical nurses,who were recruited through convenience sampling,participated in the survey.Results: Nurses' average perceived abusive supervision,psychological empowerment,and turnover intention scores were 1.62 ± 0.95,3.24 ± 0.83,and 14.17 ± 3.78,respectively.Psychological empowerment was found to mediate the relationship between abusive supervision and turnover intention (P< 0.01).Turnover intention tends to be stronger and psychological empowerment reduced when nurse managers adopt an abusive leadership style.Conclusions: Nurses' psychological empowerment is an intermediary variable that predicts the relationship between abusive supervision and turnover intention.Nurse managers should manage abusive supervision to increase nurses' psychological empowerment and decrease turnover intention.展开更多
The development of highly active and stable acidic water oxidation electrocatalysts is of great significant for promoting the industrial application of proton exchange membrane electrolyzers.Ru-based catalysts have br...The development of highly active and stable acidic water oxidation electrocatalysts is of great significant for promoting the industrial application of proton exchange membrane electrolyzers.Ru-based catalysts have broad application prospects in acidic water oxidation,but their limitations in stability and activity hinder their further application.Herein,a nitrogen-doped carbon(NC)coated porous Ru/RuO_(2) heterojunctional hollow sphere(Ru/RuO_(2)/NC)is designed as high-active and stable bifunctional electrocatalyst for acidic oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In synthesis,the key is to use mesoporous polydopamine spheres as a template for forming hollow spheres,a source of NC coating and a reducing agent for forming Ru/RuO_(2) heterojunction.The Ru/RuO_(2) heterojunction adjusts the electronic structure of Ru active sites,optimizing the adsorption of intermediate species.Furthermore,the NC coating and the interaction between NC and Ru/RuO_(2) effectively prevent Ru from over-oxidation and dissolution.The porous hollow structure provides more exposed active sites and promotes mass transfer.Impressively,Ru/RuO_(2)/NC exhibits outstanding OER and HER performance with low overpotentials of 211 and 32 mV at 10 mA·cm^(−2),respectively,and shows excellent stability.The acid water splitting electrolyzer,based on the bifunctional Ru/RuO_(2)/NC,requires low cell voltages of 1.46 and 1.76 V at 10 and 100 mA·cm^(−2),respectively,with good stability for over 100 h operation,surpassing Pt/C||RuO_(2) and most of the reported catalysts.展开更多
基金financially supported by the National Key R&D Program of China(2022YFA1503003)the National Natural Science Foundation of China(91961111,22271081)+3 种基金the Natural Science Foundation of Heilongjiang Province(ZD2021B003)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020004)The Basic Research Fund of Heilongjiang University in Heilongjiang Province(2021-KYYWF-0039)the Heilongjiang University Excellent Youth Foundation。
文摘Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.
基金funded by the National Natural Science Foundation of China (32371341,31872674)the Scientific and Technologic Foundation of Jilin Province (20230202050NC)the Fundamental Research Funds for the Central Universities (CGZH202206)。
文摘Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan is the main type of polysaccharide from natural mushroom,which has potential medicinal prospects.Nevertheless,the antidiabetic property of mannogalactoglucan in T1DM has not been fully elucidated.In this study,we obtained the neutral fraction of alkali-soluble Armillaria mellea polysaccharide(AAMP-N) with the structure of mannogalactoglucan from the fruiting body of A.mellea and investigated the potential therapeutic value of AAMP-N in T1DM.We demonstrated that AAMP-N lowered blood glucose and improved diabetes symptoms in T1DM mice.AAMP-N activated unfolded protein response(UPR) signaling pathway to maintain ER protein folding homeostasis and promote insulin secretion in vivo.Besides that,AAMP-N promoted insulin synthesis via upregulating the expression of transcription factors,increased Ca^(2+) signals to stimulate intracellular insulin secretory vesicle transport via activating calcium/calmodulin-dependent kinase Ⅱ(CamkⅡ) and cAMP/PKA signals,and enhanced insulin secretory vesicle fusion with the plasma membrane via vesicle-associated membrane protein 2(VAMP2).Collectively,these studies demonstrated that the therapeutic potential of AAMP-N on pancreatic islets function,indicating that mannogalactoglucan could be natural nutraceutical used for the treatment of T1DM.
基金supported by the National Natural Science Foundation of China[31872674]the Jilin Talent Development Foundation Grant[20200301018RQ]the Fundamental Research Funds for the Central Universities[CGZH202206].
文摘Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.
基金This work was supported by the Natural Science Foundation of China(No.71704040)
文摘Objective: This study aims to determine the mediating effects of psychological empowerment on abusive supervision and turnover intention as perceived by nurses to provide information to change the status of nurse turnover.Methods: A cross-sectional survey (a questionnaire examining perceptions of abusive supervision,measurement of psychological empowerment,and questionnaire for turnover intention) was used to collect data.A total of 1127 clinical nurses,who were recruited through convenience sampling,participated in the survey.Results: Nurses' average perceived abusive supervision,psychological empowerment,and turnover intention scores were 1.62 ± 0.95,3.24 ± 0.83,and 14.17 ± 3.78,respectively.Psychological empowerment was found to mediate the relationship between abusive supervision and turnover intention (P< 0.01).Turnover intention tends to be stronger and psychological empowerment reduced when nurse managers adopt an abusive leadership style.Conclusions: Nurses' psychological empowerment is an intermediary variable that predicts the relationship between abusive supervision and turnover intention.Nurse managers should manage abusive supervision to increase nurses' psychological empowerment and decrease turnover intention.
基金supported by the National Key Research and Development Program of China(No.2022YFA1503002)the National Natural Science Foundation of China(Nos.22271081 and 91961111)+2 种基金the Natural Science Foundation of Heilongjiang Province(No.ZD2021B003)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020004)the Heilongjiang University Excellent Youth Foundation.
文摘The development of highly active and stable acidic water oxidation electrocatalysts is of great significant for promoting the industrial application of proton exchange membrane electrolyzers.Ru-based catalysts have broad application prospects in acidic water oxidation,but their limitations in stability and activity hinder their further application.Herein,a nitrogen-doped carbon(NC)coated porous Ru/RuO_(2) heterojunctional hollow sphere(Ru/RuO_(2)/NC)is designed as high-active and stable bifunctional electrocatalyst for acidic oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In synthesis,the key is to use mesoporous polydopamine spheres as a template for forming hollow spheres,a source of NC coating and a reducing agent for forming Ru/RuO_(2) heterojunction.The Ru/RuO_(2) heterojunction adjusts the electronic structure of Ru active sites,optimizing the adsorption of intermediate species.Furthermore,the NC coating and the interaction between NC and Ru/RuO_(2) effectively prevent Ru from over-oxidation and dissolution.The porous hollow structure provides more exposed active sites and promotes mass transfer.Impressively,Ru/RuO_(2)/NC exhibits outstanding OER and HER performance with low overpotentials of 211 and 32 mV at 10 mA·cm^(−2),respectively,and shows excellent stability.The acid water splitting electrolyzer,based on the bifunctional Ru/RuO_(2)/NC,requires low cell voltages of 1.46 and 1.76 V at 10 and 100 mA·cm^(−2),respectively,with good stability for over 100 h operation,surpassing Pt/C||RuO_(2) and most of the reported catalysts.