A unit cell model is applied to study the creep damage behavior after fiber fractures in the fiber-reinforced composites at high temperature. The user subroutine CREEP has been programmed for ABAQUS. The fiber breakag...A unit cell model is applied to study the creep damage behavior after fiber fractures in the fiber-reinforced composites at high temperature. The user subroutine CREEP has been programmed for ABAQUS. The fiber breakage results in a new crack. The results show that the stress concentration factor resulted from the fiber breakage increases with the creep time. The creep damage takes place near the crack, and then grows in the matrix along a certain angle, up to the total failure. The influences of the ratio of modulus of the fiber to the matrix (Ef/Em) on the creep deformation, damage and stress distributions have been studied. With the increasing Ef/Em, the damage in the matrix increases. Analysis on the different ductility of matrix shows that the creep damage of low ductile matrix composites is higher than high ductile matrix composites.展开更多
Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For ...Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For a small notch radius, von Mises stress has an especial distribution. The damage distribution is greatly influenced by the notch depth, notch radius as well as notch type. The creep crack initiation place is different for each notched specimen. The characteristics of notch strengthening and notch weakening depend on the notch radius and notch type. For the same notch type, the creep rupture lives decrease with the decreasing of notch radius. A creep life model has been presented for the multiaxial stress states based on the crystallographic slip system theory.展开更多
A 3-D micro cell model with multi-fibers has been presented to study the effects of breakage of single fiber on the whole creep behavior of fiber reinforced composites by finite element method (FEM). Before the fiber ...A 3-D micro cell model with multi-fibers has been presented to study the effects of breakage of single fiber on the whole creep behavior of fiber reinforced composites by finite element method (FEM). Before the fiber breakage, the stresses of all fibers are identical. With the creep time increasing, stress in fiber increases but stress in matrix decreases. It is assumed that the fiber breakage occurs when the stress in fiber reaches a critical value. The stress redistribution resulted from the breakage of fiber has been obtained. The influence on the axial stress of the broken fiber is local. The stress in the all fiber sections is not uniform. There is a local stress concentration in the matrix. And this stress concentration in the matrix is more and more serious with the creep deformation. The stress transference of the loading due to the fiber breakage has been studies numerically. It is found that the fibers near to the broken fiber will take over more loading.展开更多
A numerical simulation method is presented for the random-fuzzy safety analysis of an aero engine disk. Based on the equivalent transformation from a fuzzy variable to a random variable, the equivalent random Probabil...A numerical simulation method is presented for the random-fuzzy safety analysis of an aero engine disk. Based on the equivalent transformation from a fuzzy variable to a random variable, the equivalent random Probability Density Functions(PDFs) are got from their corresponding Fuzzy Possibility Distributions(FPDs) for the fuzzy variables. In that case the perfect numerical simulation method for the random uncertainty is employed to solve the fuzzy uncertainty. For the complex structure such as the aero engine disk with implicit relationship between the input basic variable and the response variable, the equivalent PDFs of the input basic variables are delivered simultaneously to the response variable by an empirical PDF, which is simulated by Finite Element Method(FEM). Then, in view of the fuzzy application requirement occurring in engineering usually, the reliability definition and calculation are discussed for the aero engine disk with multiple fuzzy failure modes. On the other hand, through the inverse transformation of the fuzzy variable to the random variable, the FPDs of the response variables can be calculated from their empirical PDFs as well.展开更多
Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rat...Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rate for each case studied for different creep properties of the TBC system. The steady creep depth rate depends on the applied indentation creep stress and size of the indenters as well as the creep properties of the bond coat of the TBC and the substrate. The possibilities to determine the creep properties of a thermal barrier system from indention creep testing were discussed. As an example, with two different size indenters, the creep properties of bond coat of the TBC system can be derived by an inverse FEM method. This study not only provides a numerical method to obtain the creep properties of the TBC system, but also extends the application of indentation creep method with cylindrical flat indenters.展开更多
文摘A unit cell model is applied to study the creep damage behavior after fiber fractures in the fiber-reinforced composites at high temperature. The user subroutine CREEP has been programmed for ABAQUS. The fiber breakage results in a new crack. The results show that the stress concentration factor resulted from the fiber breakage increases with the creep time. The creep damage takes place near the crack, and then grows in the matrix along a certain angle, up to the total failure. The influences of the ratio of modulus of the fiber to the matrix (Ef/Em) on the creep deformation, damage and stress distributions have been studied. With the increasing Ef/Em, the damage in the matrix increases. Analysis on the different ductility of matrix shows that the creep damage of low ductile matrix composites is higher than high ductile matrix composites.
基金supported by the National Natural Science Foundation of China(50005016,50375124)Natural Science Foundation of Shaanxi Province and China Aviation Foundation(02C53011,03B53003)as well as the Yangtze River Foundation
文摘Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For a small notch radius, von Mises stress has an especial distribution. The damage distribution is greatly influenced by the notch depth, notch radius as well as notch type. The creep crack initiation place is different for each notched specimen. The characteristics of notch strengthening and notch weakening depend on the notch radius and notch type. For the same notch type, the creep rupture lives decrease with the decreasing of notch radius. A creep life model has been presented for the multiaxial stress states based on the crystallographic slip system theory.
基金support of National Natural Science Foundation of China(50005016,50375124)Natural Science Foundation of Shaanxi Province and China Aviation Foundation(00B53010,03B53003)as well as the Yangtze River Foundation.
文摘A 3-D micro cell model with multi-fibers has been presented to study the effects of breakage of single fiber on the whole creep behavior of fiber reinforced composites by finite element method (FEM). Before the fiber breakage, the stresses of all fibers are identical. With the creep time increasing, stress in fiber increases but stress in matrix decreases. It is assumed that the fiber breakage occurs when the stress in fiber reaches a critical value. The stress redistribution resulted from the breakage of fiber has been obtained. The influence on the axial stress of the broken fiber is local. The stress in the all fiber sections is not uniform. There is a local stress concentration in the matrix. And this stress concentration in the matrix is more and more serious with the creep deformation. The stress transference of the loading due to the fiber breakage has been studies numerically. It is found that the fibers near to the broken fiber will take over more loading.
文摘A numerical simulation method is presented for the random-fuzzy safety analysis of an aero engine disk. Based on the equivalent transformation from a fuzzy variable to a random variable, the equivalent random Probability Density Functions(PDFs) are got from their corresponding Fuzzy Possibility Distributions(FPDs) for the fuzzy variables. In that case the perfect numerical simulation method for the random uncertainty is employed to solve the fuzzy uncertainty. For the complex structure such as the aero engine disk with implicit relationship between the input basic variable and the response variable, the equivalent PDFs of the input basic variables are delivered simultaneously to the response variable by an empirical PDF, which is simulated by Finite Element Method(FEM). Then, in view of the fuzzy application requirement occurring in engineering usually, the reliability definition and calculation are discussed for the aero engine disk with multiple fuzzy failure modes. On the other hand, through the inverse transformation of the fuzzy variable to the random variable, the FPDs of the response variables can be calculated from their empirical PDFs as well.
基金supported by the National Natural Science Foundation of China(50005016,50375124)China Aviation Foundation(02c53011,03B53003)as well as the Yangtze River Foundation.
文摘Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rate for each case studied for different creep properties of the TBC system. The steady creep depth rate depends on the applied indentation creep stress and size of the indenters as well as the creep properties of the bond coat of the TBC and the substrate. The possibilities to determine the creep properties of a thermal barrier system from indention creep testing were discussed. As an example, with two different size indenters, the creep properties of bond coat of the TBC system can be derived by an inverse FEM method. This study not only provides a numerical method to obtain the creep properties of the TBC system, but also extends the application of indentation creep method with cylindrical flat indenters.