Broadband lasers have been proposed as future drivers of inertial confined fusion(ICF)to enhance the laser-target coupling efficiency via the mitigation of various parametric instabilities.The physical mechanisms invo...Broadband lasers have been proposed as future drivers of inertial confined fusion(ICF)to enhance the laser-target coupling efficiency via the mitigation of various parametric instabilities.The physical mechanisms involved have been explored recently,but are not yet fully understood.Here,stimulated Raman scattering(SRS)as one of the key parametric instabilities is investigated theoretically and numerically for a broadband laser propagating in homogeneous plasma in multidimensional geometry.The linear SRS growth rate is derived as a function of scattering angles for two monochromatic laser beams with a fixed frequency differenceδω.Ifδω/ω_(0)∼1%,withω0 the laser frequency,these two laser beams may be decoupled in stimulating backward SRS while remaining coupled for sideward SRS at the laser intensities typical for ICF.Consequently,side-scattering may dominate over backward SRS for two-color laser light.This finding of SRS transition from backward to sideward SRS is then generalized for a broadband laser with a few-percent bandwidth.Particle-in-cell simulations demonstrate that with increasing laser bandwidth,the sideward SRS gradually becomes dominant over the backward SRS.Since sideward SRS is very efficient in producing harmful hot electrons,attention needs to be paid on this effect if ultra-broadband lasers are considered as next-generation ICF drivers.展开更多
Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The g...Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.展开更多
In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar ...In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.展开更多
The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main r...The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main results from an experimental program to assess these effects for commercial Mg alloy extrusions(AM30 and AZ31),sheet(AZ31),and high pressure die castings(HPDC,AM50 and AM60).Uniaxial tensile and compressive tests were performed over a wide range of strain rate and temperature(i.e.0.00075–2800 s^(−1) and 100℃ to−150℃)using conventional servo-hydraulic and high-strain-rate universal test machines and a split-Hopkinson-bar(SHB)apparatus.In primarily-slip-dominant deformation,the true stress–strain curves showed approximate power-law behavior,and the effects of strain rate and temperature on yield strength could be approximately described by constitutive equations linearly dependent on the rate parameter,Tln(5.3×10^(7)/ɛ˙)where T is test temperature in Kelvin andɛ˙is strain rate in s^(−1).In primarily-twin-dominant deformation,the effects of strain rate and temperature on yield and initial flow stress were negligible or small from quasi-static to 2800 s^(−1) owing to the athermal characteristics of mechanical twinning;the effects may become more pronounced with exhaustion of twinning and increasing proportion of slip.展开更多
The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study...The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect.展开更多
Variations in composition,microhardness(in the thermomechanically affected zone)and texture in the tool domain of the dissimilar friction stir weld of AA5083-O and AA6082-T6alloys were investigated.The contents of the...Variations in composition,microhardness(in the thermomechanically affected zone)and texture in the tool domain of the dissimilar friction stir weld of AA5083-O and AA6082-T6alloys were investigated.The contents of the major alloying elements in the weld zones were determined using inductively coupled plasma-atomic emission spectroscopy.It was observed that a slight drop in the content of the alloying elements results from the friction stir welding process with the Mg content being the most affected amongst the major alloying elements in the two alloys.By relating the mass fractions of the major alloying elements in the parent metals of both alloys to those of the stir zone,the relative proportions of the two alloys in the stir zone were estimated with the results showing that at least60%of the materials in the stir zone are from the retreating side of the weld.It was also revealed that the changes in the hardness profile in the thermomechanically affected zone of the retreating side are predominantly influenced by changes in grain size in that domain.Finally,the investigation further revealed that the texture component in the tool shoulder domain is different from the texture component in the tool pin domain.展开更多
NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as o...NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as outstanding superelastic properties.Here,UFGed bulk Ti_(35)Zr_(15)Ni_(35)Cu_(15)NiTi-based SMA is successfully prepared via spark plasma sintering of amorphous ribbon precursor at different sintering temperatures,and microstructural evolution and superelastic properties are symmetrically investigated.It is found that its grain size ranges from UFG to micro-grain with increased sintering temperature regard-less of the predominant B2 matrix in all bulk samples.Interestingly,the orientation relationships between B2 matrix and nano-scale fcc(Ti,Zr)_(2)Ni precipitate evolve from coherent to incoherent.Consequently,the UFGed samples exhibit perfect superelasticity with the high recoverable strain of∼5.8%,the stable recov-ery rate above 99%,and the great critical stress inducing martensitic transformation higher than 1 GPa,far superior to the corresponding ones of suction-cast micro-grained TiZrNiCu SMAs.Fundamentally,the perfect superelasticity is attributed to the good resistance to dislocation slip or grain boundary slip by residual nano-scale amorphous phase or secondary phase of coherent and semi-coherent fcc(Ti,Zr)_(2)Ni precipitate.In addition,the gentle superelastic plateau is associated to the favorable transfer stress and the strong ability to accommodate dislocation movement,which is generated by the coherent interface between nano-scale fcc(Ti,Zr)_(2)Ni and UFGed B2 matrix.These results suggest that spark plasma sintering of amorphous alloy precursor is a feasible route to obtaining excellent superelasticity in NiTi-based SMAs.展开更多
Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia.Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity ...Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia.Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity to gain more knowledge about environmental changes in the West Siberian interior during the Holocene and about the evolution of the lake itself.Sediment cores obtained from the Yarkov subbasin of the lake in 2008 have been comprehensively studied by a number of approaches including sedimentology and AMS dating,pollen,diatom and chironomid analyses(with statistical interpretation of the results),mineralogy of authigenic minerals and geochemistry of plant lipids(biomarker analysis.).Synthesis of new results presented here and published data provides a good justification for our hypothesis that Lake Chany is very young,no older than 3.6 ka BP.Before that,between 9 and 3.6 ka BP,the Chany basin was a swampy landscape with a very low sedimentation rate;it could not be identified as a water body.In the early lake phase,between 3.6 and 1.5 ka BP,the lake was shallow,1.2–3.5 m in depth,and it rose to its modern size,up to 6.5 m in depth,during the last millennium.Our data reveal important changes in the understanding of the history of this large endorheic lake,as before it was envisioned as a large lake with significant changes in water level since ca.14 ka BP.In addition to hydrology,our proxies provide updates and details of the regional vegetation and climate change since ca.4 ka BP in the WestSiberian forest-steppe and steppe.As evolution of the Chany basin is dependent on hydroclimatic changes in a large region of southern West Siberia,we compare lake-level change and climate-change proxies from the other recently and most comprehensively studied lakes of the region.展开更多
At the beginning of a COVID-19 infection,there is a period of time known as the exposed or latency period,before an infected person is capable of transmitting the infection to another person.We develop two differentia...At the beginning of a COVID-19 infection,there is a period of time known as the exposed or latency period,before an infected person is capable of transmitting the infection to another person.We develop two differential equations models to account for this period.The first is a model that incorporates infected persons in the exposed class,before transmission is possible.The second is a model that incorporates a time delay in infected persons,before transmission is possible.We apply both models to the COVID-19 epidemic in China.We estimate the epidemiological parameters in the models,such as the transmission rate and the basic reproductive number,using data of reported cases.We thus evaluate the role of the exposed or latency period in the dynamics of a COVID-19 epidemic.展开更多
The understanding that mankind should reasonably exploit and utilize earth resources and effectively protect the planet on which we live,is now widely accepted.However,effective actions can only be conducted if we bet...The understanding that mankind should reasonably exploit and utilize earth resources and effectively protect the planet on which we live,is now widely accepted.However,effective actions can only be conducted if we better understand and visualize the earth.To meet this need,digital earth science and technology have been put forward and developed.This paper introduces the evolution and development process of digital earth,and presents an overview by reviewing and analyzing the 1999 and 2009 Beijing Declaration on Digital Earth,the scientific and commercial digital earth systems,global and regional digital earth research,and some existing platforms of digital earth science.It also presents some thoughts about digital earth’s future development.展开更多
The deformation behavior of as-built and hot isostatically pressed(HIP)Ti-6Al-4V alloys fabricated using electron beam rapid manufacturing(EBRM)were investigated in this work.The deformation characteristics were chara...The deformation behavior of as-built and hot isostatically pressed(HIP)Ti-6Al-4V alloys fabricated using electron beam rapid manufacturing(EBRM)were investigated in this work.The deformation characteristics were characterized using a laser scanning confocal microscope and electron back-scattered diffraction(EBSD).In the as-built sample,prismatic slip was the main mode of deformation,as well as a small amount of basal slip and cross-slip.Some planar slip lines with large length scales were observed across severalαlamellae.After hot isostatical pressing,prismatic and basal slip were the main mode of deformation,accompanied by abundant cross-slip and multiple slip,and most of the slip lines were blocked within an a lamellae.These differences in deformation behavior were associated with the coarsening of a laths and the more retained p phase after HIP compared to the as-built alloy.More cross-slip and multiple slip can lead to superior elongation-to-failure and a greater strain hardening effect in the HIP alloy compared to the as-built sample.展开更多
The characteristic of the surface morphology of primary α phase was studied in a deformed near-α tita- nium alloy. Dendritic α phase emerged on the surfaces of primary α phase when the alloy was air-cooled in α ...The characteristic of the surface morphology of primary α phase was studied in a deformed near-α tita- nium alloy. Dendritic α phase emerged on the surfaces of primary α phase when the alloy was air-cooled in α +β phase field after deformation. The dendritic α grain has the same orientation with its original primary α grain. The formation of the dendritic α phase could be explained by interface instability in epi- taxial growth process of the primary α phase. The dislocations induced by deformation could facilitate the formation of dendritic α phase leading to the dendritic α phase and more obvious with the increase of strain. The growth of dendritic α phase was finally limited by the nucleation of second α phase with cooling.展开更多
High transverse momentum(pT)particle production is suppressed owing to the parton(jet)energy loss in the hot dense medium created in relativistic heavy-ion collisions.Redistribution of energy at low-to-modest pT has b...High transverse momentum(pT)particle production is suppressed owing to the parton(jet)energy loss in the hot dense medium created in relativistic heavy-ion collisions.Redistribution of energy at low-to-modest pT has been difficult to measure,owing to large anisotropic backgrounds.We report a data-driven method for background evaluation and subtraction,exploiting the away-side pseudorapidity gaps,to measure the jetlike correlation shape in Au+Au collisions at √sNN=200 GeV in the STAR experiment.The correlation shapes,for trigger particles pT>3GeV/c and various associated particle pT ranges within 0.5<pT<10GeV/c,are consistent with Gaussians,and their widths increase with centrality.The results indicate jet broadening in the medium created in central heavy-ion collisions.展开更多
A heterogeneous microstructure in terms of local orientation distribution is often found in near-α titanium alloys. The presence of large regions with similar crystallographic orientation, called ‘macrozones',co...A heterogeneous microstructure in terms of local orientation distribution is often found in near-α titanium alloys. The presence of large regions with similar crystallographic orientation, called ‘macrozones',could drastically decrease the fatigue performance of titanium alloys. The present work reports on the crystallographic orientation of a near-α titanium alloy, Ti60, billet after annealing in an α+β phase field.The texture was found to be weak, and no obvious macrozone was found in our measured zone where the variant selection is suppressed. Meanwhile, in-depth electron backscattered diffraction(EBSD) analysis was applied to evaluate the final microstructure, and the mechanisms by which they formed were analyzed.展开更多
Ocean wave energy conversion as one of the renewable clean energy sources is attracting the research interests of many people.This review introduces different types of power take-off(PTO)technology of wave energy conv...Ocean wave energy conversion as one of the renewable clean energy sources is attracting the research interests of many people.This review introduces different types of power take-off(PTO)technology of wave energy converters.The novelty of this paper is to present advantages and disadvantages of the linear direct and indirect drive PTO devices for ocean wave energy conversion.The designs and optimizations of PTO systems of ocean wave energy converters have been studied from reviewing the recently published literature.The novel mechanical designs of the PTO systems have been compared and investigated in order to increase the energy harvesting efficiency.展开更多
Developing a high-performance ORR(oxygen reduction reaction)catalyst at low cost has been a challenge for the commercialization of high-energy density and low production cost aluminium-air batteries.Herein,we report a...Developing a high-performance ORR(oxygen reduction reaction)catalyst at low cost has been a challenge for the commercialization of high-energy density and low production cost aluminium-air batteries.Herein,we report a catalyst,prepared by pyrolyzing the shell waste of peanut or pistachio,followed by concurrent nitrogen-doping and FeCo alloy nanoparticle loading.Large surface area(1246.4m2 g-1)of pistachio shell-derived carbon can be obtained by combining physical and chemical treatments of the biomass.Such a large surface area carbon eases nitrogen doping and provides more nucleation sites for FeCo alloy growth,furnishing the resultant catalyst(FeCo/N-C-Pistachio)with higher content of N,Fe,and Co with a larger electrochemically active surface area as compared to its peanut shell counterpart(FeCo/N-C-Peanut).The FeCo/N-CPistachio displays a promising onset potential of 0.93V vs.RHE and a high saturating current density of 4.49mAcm-2,suggesting its high ORR activity.An aluminium-air battery,with FeCo/N-C-Pistachio catalyst on the cathode and coupled with a commercial aluminium 1100 anode,delivers a power density of 99.7mWcm-2 and a stable discharge voltage at 1.37V over 5 h of operation.This high-performance,low-cost,and environmentally sustainable electrocatalyst shows potential for large-scale adoption of aluminium-air batteries.展开更多
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050100)the National Natural Science Foundation of China(Grant Nos.11991074,11975154,12005287,and 12135009)+2 种基金the Science Challenge Project(Grant No.TZ2018005)X.F.Li was supported by the China and Germany Postdoctoral Exchange Program from the Office of the China Postdoctoral Council and the Helmholtz Centre(Grant No.20191016)and the China Postdoctoral Science Foundation(Grant No.2018M641993)Y.Zhao was also supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011695).Simulations were carried out on the JURECA and JUWELS supercomputers at the Jülich Supercomputing Centre,which are granted from the Projects JZAM04 and LAPIPE.
文摘Broadband lasers have been proposed as future drivers of inertial confined fusion(ICF)to enhance the laser-target coupling efficiency via the mitigation of various parametric instabilities.The physical mechanisms involved have been explored recently,but are not yet fully understood.Here,stimulated Raman scattering(SRS)as one of the key parametric instabilities is investigated theoretically and numerically for a broadband laser propagating in homogeneous plasma in multidimensional geometry.The linear SRS growth rate is derived as a function of scattering angles for two monochromatic laser beams with a fixed frequency differenceδω.Ifδω/ω_(0)∼1%,withω0 the laser frequency,these two laser beams may be decoupled in stimulating backward SRS while remaining coupled for sideward SRS at the laser intensities typical for ICF.Consequently,side-scattering may dominate over backward SRS for two-color laser light.This finding of SRS transition from backward to sideward SRS is then generalized for a broadband laser with a few-percent bandwidth.Particle-in-cell simulations demonstrate that with increasing laser bandwidth,the sideward SRS gradually becomes dominant over the backward SRS.Since sideward SRS is very efficient in producing harmful hot electrons,attention needs to be paid on this effect if ultra-broadband lasers are considered as next-generation ICF drivers.
基金This work is supported by the Key Technologies Research and Development Program of Liaoning Province(2013201018).
文摘Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.
文摘In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.
基金This work is part of the crashworthiness R&D task of an on-going Canada-China-US Magnesium Front-End Research and Development(MFERD)project.The Canadian task is funded by the CCT&I and ASM-NGV programs,Govemment of Canada.
文摘The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main results from an experimental program to assess these effects for commercial Mg alloy extrusions(AM30 and AZ31),sheet(AZ31),and high pressure die castings(HPDC,AM50 and AM60).Uniaxial tensile and compressive tests were performed over a wide range of strain rate and temperature(i.e.0.00075–2800 s^(−1) and 100℃ to−150℃)using conventional servo-hydraulic and high-strain-rate universal test machines and a split-Hopkinson-bar(SHB)apparatus.In primarily-slip-dominant deformation,the true stress–strain curves showed approximate power-law behavior,and the effects of strain rate and temperature on yield strength could be approximately described by constitutive equations linearly dependent on the rate parameter,Tln(5.3×10^(7)/ɛ˙)where T is test temperature in Kelvin andɛ˙is strain rate in s^(−1).In primarily-twin-dominant deformation,the effects of strain rate and temperature on yield and initial flow stress were negligible or small from quasi-static to 2800 s^(−1) owing to the athermal characteristics of mechanical twinning;the effects may become more pronounced with exhaustion of twinning and increasing proportion of slip.
基金supported by the National Key Research and Development Project (Grant No. SQ2017YFSF060085)the National Natural Science Foundation of China (NSFC)(Grant Nos. 41472257, 41530638, and 41372302)+1 种基金the Special Fund Key Project of Applied Science and Technology Research and Development in Guangdong (Grant No. 2016B010124007)the Special Support Program for High Level Talents in Guangdong (Grant No. 2015TQ01Z344)
文摘The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect.
基金the EPSRC for financial support through the LATEST2 Programme Grant
文摘Variations in composition,microhardness(in the thermomechanically affected zone)and texture in the tool domain of the dissimilar friction stir weld of AA5083-O and AA6082-T6alloys were investigated.The contents of the major alloying elements in the weld zones were determined using inductively coupled plasma-atomic emission spectroscopy.It was observed that a slight drop in the content of the alloying elements results from the friction stir welding process with the Mg content being the most affected amongst the major alloying elements in the two alloys.By relating the mass fractions of the major alloying elements in the parent metals of both alloys to those of the stir zone,the relative proportions of the two alloys in the stir zone were estimated with the results showing that at least60%of the materials in the stir zone are from the retreating side of the weld.It was also revealed that the changes in the hardness profile in the thermomechanically affected zone of the retreating side are predominantly influenced by changes in grain size in that domain.Finally,the investigation further revealed that the texture component in the tool shoulder domain is different from the texture component in the tool pin domain.
基金This work was financially supported by the Key Basic and Applied Research Program of Guangdong Province(No.2019B030302010)the National Natural Science Foundation of China(No.U19A2085)+1 种基金the Key-Area Research and Develop-ment Program of Guangdong Province(No.2020B090923001)Special thanks to Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd.(SIMR)for its support in TEM testing.
文摘NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as outstanding superelastic properties.Here,UFGed bulk Ti_(35)Zr_(15)Ni_(35)Cu_(15)NiTi-based SMA is successfully prepared via spark plasma sintering of amorphous ribbon precursor at different sintering temperatures,and microstructural evolution and superelastic properties are symmetrically investigated.It is found that its grain size ranges from UFG to micro-grain with increased sintering temperature regard-less of the predominant B2 matrix in all bulk samples.Interestingly,the orientation relationships between B2 matrix and nano-scale fcc(Ti,Zr)_(2)Ni precipitate evolve from coherent to incoherent.Consequently,the UFGed samples exhibit perfect superelasticity with the high recoverable strain of∼5.8%,the stable recov-ery rate above 99%,and the great critical stress inducing martensitic transformation higher than 1 GPa,far superior to the corresponding ones of suction-cast micro-grained TiZrNiCu SMAs.Fundamentally,the perfect superelasticity is attributed to the good resistance to dislocation slip or grain boundary slip by residual nano-scale amorphous phase or secondary phase of coherent and semi-coherent fcc(Ti,Zr)_(2)Ni precipitate.In addition,the gentle superelastic plateau is associated to the favorable transfer stress and the strong ability to accommodate dislocation movement,which is generated by the coherent interface between nano-scale fcc(Ti,Zr)_(2)Ni and UFGed B2 matrix.These results suggest that spark plasma sintering of amorphous alloy precursor is a feasible route to obtaining excellent superelasticity in NiTi-based SMAs.
基金The biomarker analysis and all organic matter related interpretations were made in favor of the joint Russia-China research project,RFBR no.21-55-53037 and NSFC no.42111530031The lake level changes were investigated in favor of the RFBR project No.19-29-05085+6 种基金Numerical reconstruction of climate was made in the frame of ANSO Collaborative Research(ANSO-CR-PP-2021-02)The contribution by Natalia Rudaya matches interests of the RSF project no.20-17-00110the Tomsk State University Development Program(Priority 2030)financed by National Natural Science Foundation of China(grant no.41988101)the Sino-German Mobility Program(grant no.M-0359)Diatom and chironomid analyses were funded by the RSF project No.20-17-00135Databases developed with the support of the RSF No.22-17-00185 and 22-17-00113 projects were used for quantitative environmental reconstructions(WD and T July)and supplementary statistical research.
文摘Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia.Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity to gain more knowledge about environmental changes in the West Siberian interior during the Holocene and about the evolution of the lake itself.Sediment cores obtained from the Yarkov subbasin of the lake in 2008 have been comprehensively studied by a number of approaches including sedimentology and AMS dating,pollen,diatom and chironomid analyses(with statistical interpretation of the results),mineralogy of authigenic minerals and geochemistry of plant lipids(biomarker analysis.).Synthesis of new results presented here and published data provides a good justification for our hypothesis that Lake Chany is very young,no older than 3.6 ka BP.Before that,between 9 and 3.6 ka BP,the Chany basin was a swampy landscape with a very low sedimentation rate;it could not be identified as a water body.In the early lake phase,between 3.6 and 1.5 ka BP,the lake was shallow,1.2–3.5 m in depth,and it rose to its modern size,up to 6.5 m in depth,during the last millennium.Our data reveal important changes in the understanding of the history of this large endorheic lake,as before it was envisioned as a large lake with significant changes in water level since ca.14 ka BP.In addition to hydrology,our proxies provide updates and details of the regional vegetation and climate change since ca.4 ka BP in the WestSiberian forest-steppe and steppe.As evolution of the Chany basin is dependent on hydroclimatic changes in a large region of southern West Siberia,we compare lake-level change and climate-change proxies from the other recently and most comprehensively studied lakes of the region.
基金Research was partially supported by NSFC and CNRS(Grant Nos.11871007 and 11811530272)the Fundamental Research Funds for the Central UniversitiesResearch was partially supported by CNRS and National Natural Science Foundation of China(Grant No.11811530272).
文摘At the beginning of a COVID-19 infection,there is a period of time known as the exposed or latency period,before an infected person is capable of transmitting the infection to another person.We develop two differential equations models to account for this period.The first is a model that incorporates infected persons in the exposed class,before transmission is possible.The second is a model that incorporates a time delay in infected persons,before transmission is possible.We apply both models to the COVID-19 epidemic in China.We estimate the epidemiological parameters in the models,such as the transmission rate and the basic reproductive number,using data of reported cases.We thus evaluate the role of the exposed or latency period in the dynamics of a COVID-19 epidemic.
基金This research was supported by National Basic Research Program of China(973 Program,No.2009CB723906).
文摘The understanding that mankind should reasonably exploit and utilize earth resources and effectively protect the planet on which we live,is now widely accepted.However,effective actions can only be conducted if we better understand and visualize the earth.To meet this need,digital earth science and technology have been put forward and developed.This paper introduces the evolution and development process of digital earth,and presents an overview by reviewing and analyzing the 1999 and 2009 Beijing Declaration on Digital Earth,the scientific and commercial digital earth systems,global and regional digital earth research,and some existing platforms of digital earth science.It also presents some thoughts about digital earth’s future development.
基金financially supported by the National Key Research and Development Program of China (No.2017YFB1103100)the Avic Science Foundation of China (No.20175492002)the National Natural Science Foundation of China (No.51801213)
文摘The deformation behavior of as-built and hot isostatically pressed(HIP)Ti-6Al-4V alloys fabricated using electron beam rapid manufacturing(EBRM)were investigated in this work.The deformation characteristics were characterized using a laser scanning confocal microscope and electron back-scattered diffraction(EBSD).In the as-built sample,prismatic slip was the main mode of deformation,as well as a small amount of basal slip and cross-slip.Some planar slip lines with large length scales were observed across severalαlamellae.After hot isostatical pressing,prismatic and basal slip were the main mode of deformation,accompanied by abundant cross-slip and multiple slip,and most of the slip lines were blocked within an a lamellae.These differences in deformation behavior were associated with the coarsening of a laths and the more retained p phase after HIP compared to the as-built alloy.More cross-slip and multiple slip can lead to superior elongation-to-failure and a greater strain hardening effect in the HIP alloy compared to the as-built sample.
文摘The characteristic of the surface morphology of primary α phase was studied in a deformed near-α tita- nium alloy. Dendritic α phase emerged on the surfaces of primary α phase when the alloy was air-cooled in α +β phase field after deformation. The dendritic α grain has the same orientation with its original primary α grain. The formation of the dendritic α phase could be explained by interface instability in epi- taxial growth process of the primary α phase. The dislocations induced by deformation could facilitate the formation of dendritic α phase leading to the dendritic α phase and more obvious with the increase of strain. The growth of dendritic α phase was finally limited by the nucleation of second α phase with cooling.
文摘High transverse momentum(pT)particle production is suppressed owing to the parton(jet)energy loss in the hot dense medium created in relativistic heavy-ion collisions.Redistribution of energy at low-to-modest pT has been difficult to measure,owing to large anisotropic backgrounds.We report a data-driven method for background evaluation and subtraction,exploiting the away-side pseudorapidity gaps,to measure the jetlike correlation shape in Au+Au collisions at √sNN=200 GeV in the STAR experiment.The correlation shapes,for trigger particles pT>3GeV/c and various associated particle pT ranges within 0.5<pT<10GeV/c,are consistent with Gaussians,and their widths increase with centrality.The results indicate jet broadening in the medium created in central heavy-ion collisions.
文摘A heterogeneous microstructure in terms of local orientation distribution is often found in near-α titanium alloys. The presence of large regions with similar crystallographic orientation, called ‘macrozones',could drastically decrease the fatigue performance of titanium alloys. The present work reports on the crystallographic orientation of a near-α titanium alloy, Ti60, billet after annealing in an α+β phase field.The texture was found to be weak, and no obvious macrozone was found in our measured zone where the variant selection is suppressed. Meanwhile, in-depth electron backscattered diffraction(EBSD) analysis was applied to evaluate the final microstructure, and the mechanisms by which they formed were analyzed.
基金Australia Research Council Discovery Project(Grant DPI70101039)for financial support.
文摘Ocean wave energy conversion as one of the renewable clean energy sources is attracting the research interests of many people.This review introduces different types of power take-off(PTO)technology of wave energy converters.The novelty of this paper is to present advantages and disadvantages of the linear direct and indirect drive PTO devices for ocean wave energy conversion.The designs and optimizations of PTO systems of ocean wave energy converters have been studied from reviewing the recently published literature.The novel mechanical designs of the PTO systems have been compared and investigated in order to increase the energy harvesting efficiency.
文摘Developing a high-performance ORR(oxygen reduction reaction)catalyst at low cost has been a challenge for the commercialization of high-energy density and low production cost aluminium-air batteries.Herein,we report a catalyst,prepared by pyrolyzing the shell waste of peanut or pistachio,followed by concurrent nitrogen-doping and FeCo alloy nanoparticle loading.Large surface area(1246.4m2 g-1)of pistachio shell-derived carbon can be obtained by combining physical and chemical treatments of the biomass.Such a large surface area carbon eases nitrogen doping and provides more nucleation sites for FeCo alloy growth,furnishing the resultant catalyst(FeCo/N-C-Pistachio)with higher content of N,Fe,and Co with a larger electrochemically active surface area as compared to its peanut shell counterpart(FeCo/N-C-Peanut).The FeCo/N-CPistachio displays a promising onset potential of 0.93V vs.RHE and a high saturating current density of 4.49mAcm-2,suggesting its high ORR activity.An aluminium-air battery,with FeCo/N-C-Pistachio catalyst on the cathode and coupled with a commercial aluminium 1100 anode,delivers a power density of 99.7mWcm-2 and a stable discharge voltage at 1.37V over 5 h of operation.This high-performance,low-cost,and environmentally sustainable electrocatalyst shows potential for large-scale adoption of aluminium-air batteries.