Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recom...Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production. The vaccine strain H5-Re13 contains the hemagglutinin(HA) and neuraminidase(NA) genes of an H5 N6 virus that bears the clade 2.3.4.4 h HA gene, H5-Re14 contains the HA and NA genes of an H5 N8 virus that bears the clade 2.3.4.4 b HA gene, and H7-Re4 contains the HA and NA genes of H7 N9 virus detected in 2021. We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese. The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested. Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses(an H5 N1 virus, an H5 N6 virus, and an H5 N8 virus) bearing the clade 2.3.4.4 b HA gene, an H5 N6 virus bearing the clade 2.3.4.4 h HA gene, and an H7 N9 virus. All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses. Similar protective efficacy against H5 viruses bearing the clade 2.3.4.4 h or 2.3.4.4 b HA gene was observed in ducks and geese. Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7 N9 viruses that are currently circulating in nature.展开更多
We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/...We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/S4184/17) (a clade 2.3.4.4d virus), A/chicken/Liaoning/SD007/2017(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/ Guangxi/SD098/2017(H7N9) (CK/GX/SD098/17), respectively. The protective efficacy of this novel vaccine and that of the recently used H5/H7 bivalent inactivated vaccine against different H5 and H7N9 viruses was evaluated in chickens. We found that the H5/H7 bivalent vaccine provided solid protection against the H7N9 virus CK/GX/SD098/17, but only 50–60% protection against different H5 viruses. In contrast, the novel H5/H7 trivalent vaccine provided complete protection against the H5 and H7 viruses tested. Our study underscores the importance of timely updating of vaccines for avian influenza control.展开更多
In 2013, a human influenza outbreak caused by a novel H7N9 virus occurred in China. Recently, the H7N9 virus acquired multiple basic amino acids at its hemagglutinin(HA) cleavage site, leading to the emergence of a ...In 2013, a human influenza outbreak caused by a novel H7N9 virus occurred in China. Recently, the H7N9 virus acquired multiple basic amino acids at its hemagglutinin(HA) cleavage site, leading to the emergence of a highly pathogenic virus. The development of an effective diagnostic method is imperative for the prevention and control of highly pathogenic H7N9 influenza. Here, we designed and synthesized three pairs of primers based on the nucleotide sequence at the HA cleavage site of the newly emerged highly pathogenic H7N9 influenza virus. One of the primer pairs and the corresponding probe displayed a high level of amplification efficiency on which a real-time RT-PCR method was established. Amplification using this method resulted in a fluorescent signal for only the highly pathogenic H7N9 virus, and not for any of the H1–H15 subtype reference strains, thus demonstrating high specificity. The method detected as low as 39.1 copies of HA-positive plasmid and exhibited similar sensitivity to the virus isolation method using embryonated chicken eggs. Importantly, the real-time RT-PCR method exhibited 100% consistency with the virus isolation method in the diagnosis of field samples. Collectively, our data demonstrate that this real-time RT-PCR assay is a rapid, sensitive and specific method, and the application will greatly aid the surveillance, prevention, and control of highly pathogenic H7N9 influenza viruses.展开更多
In the past decade,there has been extensive global surveillance for highly pathogenic avian influenza(HPAI)infection in both animals and humans,however,few studies on epidemiology of avian influenza in Democratic Peo...In the past decade,there has been extensive global surveillance for highly pathogenic avian influenza(HPAI)infection in both animals and humans,however,few studies on epidemiology of avian influenza in Democratic People’s Republic of Korea(DPRK)were published.During the period 2013–2014,HPAI H5N1 viruses were detected with outbreaks in domestic poultry in DPRK.Phylogenetic analysis revealed that the hemagglutinin gene of all samples belonged to clade 2.3.2.1c with high homology.The HPAI H5N1 virus found in ducks at the Tudan Duck Farm in 2013 was might introduced by migratory birds and then led to the outbreaks on neighboring chicken farms in 2014.These data provide direct evidence for the transmission of avian influenza viruses from wild birds to waterfowl to terrestrial birds.Therefore,the monitoring and control of influenza virus in ducks must be given top priority,which are essential components to prevent and control HPAI.展开更多
基金supported by the National Key Research and Development Program of China(2021YFD1800200)the Laboratory for Lingnan Modern Agriculture Project(NT2021007)the China Agriculture Research System of the MOF and MARA(CARS-41-G12)。
文摘Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production. The vaccine strain H5-Re13 contains the hemagglutinin(HA) and neuraminidase(NA) genes of an H5 N6 virus that bears the clade 2.3.4.4 h HA gene, H5-Re14 contains the HA and NA genes of an H5 N8 virus that bears the clade 2.3.4.4 b HA gene, and H7-Re4 contains the HA and NA genes of H7 N9 virus detected in 2021. We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese. The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested. Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses(an H5 N1 virus, an H5 N6 virus, and an H5 N8 virus) bearing the clade 2.3.4.4 b HA gene, an H5 N6 virus bearing the clade 2.3.4.4 h HA gene, and an H7 N9 virus. All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses. Similar protective efficacy against H5 viruses bearing the clade 2.3.4.4 h or 2.3.4.4 b HA gene was observed in ducks and geese. Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7 N9 viruses that are currently circulating in nature.
基金This work was supported by the National Key R&D Program of China(2016YFD0501602,2017YFD0500701,and 2016YFEO203200)the National Natural Science Foundation of China(3167131307)+1 种基金the China Agriculture Research System(CARS-41-G12)and Central Publicinterest Scientific Institution Basal Research Fund(1610302017001).
文摘We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/S4184/17) (a clade 2.3.4.4d virus), A/chicken/Liaoning/SD007/2017(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/ Guangxi/SD098/2017(H7N9) (CK/GX/SD098/17), respectively. The protective efficacy of this novel vaccine and that of the recently used H5/H7 bivalent inactivated vaccine against different H5 and H7N9 viruses was evaluated in chickens. We found that the H5/H7 bivalent vaccine provided solid protection against the H7N9 virus CK/GX/SD098/17, but only 50–60% protection against different H5 viruses. In contrast, the novel H5/H7 trivalent vaccine provided complete protection against the H5 and H7 viruses tested. Our study underscores the importance of timely updating of vaccines for avian influenza control.
基金supported by the National Key R&D Program of China(2016YFD0500800)the International Science&Technology Cooperation Program of China(2014DFR31260)
文摘In 2013, a human influenza outbreak caused by a novel H7N9 virus occurred in China. Recently, the H7N9 virus acquired multiple basic amino acids at its hemagglutinin(HA) cleavage site, leading to the emergence of a highly pathogenic virus. The development of an effective diagnostic method is imperative for the prevention and control of highly pathogenic H7N9 influenza. Here, we designed and synthesized three pairs of primers based on the nucleotide sequence at the HA cleavage site of the newly emerged highly pathogenic H7N9 influenza virus. One of the primer pairs and the corresponding probe displayed a high level of amplification efficiency on which a real-time RT-PCR method was established. Amplification using this method resulted in a fluorescent signal for only the highly pathogenic H7N9 virus, and not for any of the H1–H15 subtype reference strains, thus demonstrating high specificity. The method detected as low as 39.1 copies of HA-positive plasmid and exhibited similar sensitivity to the virus isolation method using embryonated chicken eggs. Importantly, the real-time RT-PCR method exhibited 100% consistency with the virus isolation method in the diagnosis of field samples. Collectively, our data demonstrate that this real-time RT-PCR assay is a rapid, sensitive and specific method, and the application will greatly aid the surveillance, prevention, and control of highly pathogenic H7N9 influenza viruses.
基金supported by the China Agriculture Research System of MOF and MARA(CARS-41)。
文摘In the past decade,there has been extensive global surveillance for highly pathogenic avian influenza(HPAI)infection in both animals and humans,however,few studies on epidemiology of avian influenza in Democratic People’s Republic of Korea(DPRK)were published.During the period 2013–2014,HPAI H5N1 viruses were detected with outbreaks in domestic poultry in DPRK.Phylogenetic analysis revealed that the hemagglutinin gene of all samples belonged to clade 2.3.2.1c with high homology.The HPAI H5N1 virus found in ducks at the Tudan Duck Farm in 2013 was might introduced by migratory birds and then led to the outbreaks on neighboring chicken farms in 2014.These data provide direct evidence for the transmission of avian influenza viruses from wild birds to waterfowl to terrestrial birds.Therefore,the monitoring and control of influenza virus in ducks must be given top priority,which are essential components to prevent and control HPAI.