The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different si...The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different size defects are established. The limit loads of these pipes are researched using the nonlinear finite element method. The effect of defect parameters of the local wall-thinning pipes on the limit load is discussed. The results show that limit loads decrease obviously when the depths and lengths of the defect increase. However, when the defect length reaches a certain value, the effect of defect length on limit loads is not significant. These results are compared with the results of the method of API 579. When the defect length is adequately small, the results of FEM are in good agreement with the ones of APl 579, but when the defect depth and length is adequately large, the API 579 is not suitable.展开更多
基金supported by the National High Technol-ogy Research and Development Program of China(2007AA04Z404)Natural Science Basic Research Plan in Shaanxi Province of China (SJ08A17)the Technical Innovation Foundation of NWPU(2008KJ02019)
文摘The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different size defects are established. The limit loads of these pipes are researched using the nonlinear finite element method. The effect of defect parameters of the local wall-thinning pipes on the limit load is discussed. The results show that limit loads decrease obviously when the depths and lengths of the defect increase. However, when the defect length reaches a certain value, the effect of defect length on limit loads is not significant. These results are compared with the results of the method of API 579. When the defect length is adequately small, the results of FEM are in good agreement with the ones of APl 579, but when the defect depth and length is adequately large, the API 579 is not suitable.