Atmospheric nitrogen(N)deposition has experienced significant change because of anthropogenic emissions,thereby exert-ing a pronounced impact on global ecosystem services.With the rapid development of industry and agr...Atmospheric nitrogen(N)deposition has experienced significant change because of anthropogenic emissions,thereby exert-ing a pronounced impact on global ecosystem services.With the rapid development of industry and agriculture and the swift expansion of urban areas in China since the 1980s,reactive nitrogen(Nr)emissions and N deposition have substantially increased.In pursuit of im-proving air quality,China has implemented a series of environmental protection policies and undertaken diverse measures to reduce pol-lutant emissions.This paper is a review of multivariate data sources of atmospheric N deposition based on the results of literature from 1980 to 2023,and the original data from 1980 to 2020 are summarized,counted and calculated.The main findings are as follows:1)the annual average atmospheric N deposition ranged from approximately 20-40 kg/(ha·yr),with the variability primarily linked to different assessment methods;2)regional disparities were evident in the spatial distribution of N deposition,with elevated values concentrated in areas with intense Nr emissions;3)atmospheric N deposition significantly declined after 2010,particularly the deposition of oxidized N,while reduced N deposition remained stable.These results reflect the effects of China's serious control policies on nitrogen oxide(NO.)emissions and strengthen the importance of agricultural NH3 emission mitigation.This study contributes to a comprehensive understand-ing of the N dynamics in the emission-deposition process,and provides a scientific foundation for the research of environmental protec-tion,climate change,and sustainable development.展开更多
With rapid economic growth in China, anthropogenic reactive nitrogen (Nr) emissions have more than doubled over the last two or three decades. Atmospheric Nr pollution is an environmental concern in China especially...With rapid economic growth in China, anthropogenic reactive nitrogen (Nr) emissions have more than doubled over the last two or three decades. Atmospheric Nr pollution is an environmental concern in China especially in megacities such as Beijing. In order to identify the impact of emission sources on atmospheric Nr pollution, we measured atmospheric Nr concentrations and their isotopic composition (δ15N) dynamics at three typical sites: landfill, pig farm and road traffic sites in Beijing from April 2010 to March 2011. Passive samplers were used for monitoring ammonia (NH3) and nitrogen dioxide (NO2), two major Nr species, while their δ15N values were measured by a diffusion method combined with mass spectrometer approach. The raw water pool of the landfill and fattening house of the pig farm were important NH3 sources with mean NH3 concentrations being 2,829 and 2,369 μg/m3, respectively, while the road traffic site was a minor NH3 source (10.6 μg/m3). NH3 concentrations at sites besides the landfill and roads were high in summer and low in winter due to the annual variation of temperature and the change of emission source intensity. In contrast, the NH3 concentrations inside the pig farm house were high in winter and low in summer, for the barn windows were open in summer and closed in winter. The mean NO2 concentrations were 89.8, 32.9 and 23.0 μg/m3 at the road traffic, the landfill and pig farm sites, respectively. Due to vehicle fuel combustion, NO2 concentration at the road traffic was the highest among the three sources, and the road traffic was a main NO2 emission source. PM10, pNH4* and pNO3- concentrations in particulate matter were higher in summer than in winter (except PM10 for the pig farm). The δ15NH3 values ranged from -19.14‰ to 7.82‰, with an average of-0.05‰ for the landfill site, and the lowest values were observed in June and July. The δ15NH3 values for the pig farm site ranged from -29.78‰ to-14.05‰ with an average of-24.51‰, and the 515NH3 values were more negative in summer than in the other seasons. The (515NO2 values were -9.63%o to 7.04‰ with an average of -3.72%0 for the road traffic site. The δ15NO2 values were more negative in summer than those in the other seasons. The different δ15N values for the various Nr species in different sources may serve as important indicators for identifying atmospheric Nr sources in megacities. The results may also provide the theoretical basis for research on the atmospheric N deposition and its sources.展开更多
The use of nitrogen(N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact.Sustaining food production by increasing N use ef...The use of nitrogen(N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact.Sustaining food production by increasing N use efficiency in intensive cropping systems has become a major concern for scientists,environmental groups,and agricultural policymakers worldwide.In high-yielding maize systems the major method of N loss is nitrate leaching.In this review paper,the characteristic of nitrate movement in the soil,N uptake by maize as well as the regulation of root growth by soil N availability are discussed.We suggest that an ideotype root architecture for efficient N acquisition in maize should include(i) deeper roots with high activity that are able to uptake nitrate before it moves downward into deep soil;(ii) vigorous lateral root growth under high N input conditions so as to increase spatial N availability in the soil;and(iii) strong response of lateral root growth to localized nitrogen supply so as to utilize unevenly distributed nitrate especially under limited N conditions.展开更多
Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and r...Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and reduction in fertilizer input achievable by using high-yielding and nutrient-efficient cultivars is unclear.In the present study,we evaluated the yield and nitrogen use efficiency(NUE) of 40 commercial maize hybrids at five locations in North and Northeast China in 2008 and 2009.The effect of interaction between genotype and nitrogen(N) input on maize yield was significant when the yield reduction under low-N treatment was 25%-60%.Based on the average yields achieved with high or low N application,the tested cultivars were classified into four types based on their NUE:efficient-efficient(EE) were efficient under both low and high N inputs,high-N efficient(HNE) under only high N input,low-N efficient(LNE) under only low N input,and nonefficient-nonefficient under neither low nor high N inputs.Under high N application,EE and HNE cultivars could potentially increase maize yield by 8%-10% and reduce N input by 16%-21%.Under low N application,LNE cultivars could potentially increase maize yield by 12%.We concluded that breeding for N-efficient cultivars is a feasible strategy to increase maize yield and/or reduce N input.展开更多
Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of...Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L^-1, HN) and low N (0.04 mmol L^-1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.展开更多
Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulatio...Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulation of maize root growth could improve the productivity of the two intercropping systems. Two near isogenic maize hybrids (the larger-rooted T149 and smaller-rooted T222) were intercropped with faba bean and wheat, under conditions of high- and low-P availability. The larger-rooted T149 showed greater competitive ability than the smaller-rooted T222 in both maize/faba bean and maize/wheat intercropping systems. The higher competitive ability of T149 improved the productivity of the maize/faba bean intercropping system in P-sufficient conditions. In maize/wheat intercropping systems, root growth, shoot biomass, and P uptake of maize were inhibited by wheat, regardless of the P-supply. Compared with T222, the larger-rooted T149 suffered less in the intercropping systems. The total biomass of the maize/wheat intercropping system was higher for wheat/T149 than for wheat/T222 under low-P conditions. These data suggested that genetic improvement of maize root size could enhance maize growth and its ability to compete for P resources in maize/faba bean and maize/wheat intercropping systems. In addition, depending on the P availability, larger maize roots could increase the productivity of intercropping systems.展开更多
Phosphorus (P)-deficiency in rice (Oryza. Sativa. L) may cause yield reductions. This research has been conducted to map quantitative trait loci (QTLs) for tolerance to low phosphorus stress in a doubled haploid (DH) ...Phosphorus (P)-deficiency in rice (Oryza. Sativa. L) may cause yield reductions. This research has been conducted to map quantitative trait loci (QTLs) for tolerance to low phosphorus stress in a doubled haploid (DH) population. By using the linkage map of this population, the OTLs for relative dry weight, relative P content and relative P utilization efficiency have been located. The results indicate that one RFLP marker located on chromosome 6 is closely associated with relative root dry weight, relative shoot dry weight and relative total dry weight, which explain 24.9%, 20.5% and 25.2% of the total phenotypic variations, respectively. Two QTLs affect relative P uptake content, which account for 20.7% of the total phenotypic variations. One micro-effect QTL has been found to be associated with relative P utilization efficiency. It is suggested that the P uptake efficiency is more associated with P efficiency. Among the secondary physiological indices of P uptake efficiency, the root dry weight is展开更多
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their a...Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.展开更多
A pot experiment has been carried out under controlled conditions to study the possibility of applying the technique of in vivo staining for acid phosphatase activity on the roots of mycorrhizal plants and arbuscular ...A pot experiment has been carried out under controlled conditions to study the possibility of applying the technique of in vivo staining for acid phosphatase activity on the roots of mycorrhizal plants and arbuscular mycorrhizal hyphae. The pots had 5 compartments. The central root compartment was separated from the two adjacent hyphal compartments using nylon nets of 30 μm mesh, and the two hyphal compartments were separated from the two outermost compartments with 0.45 μm membranes. Red clover was grown in the root compartment and was either inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae or uninoculated. Sodium phytate was applied to all compartments. The results show that AMF can increase acid phosphatase activity of clover roots. The plant roots acquired deep red 'mycorrhizal prints'. The external hyphae also had obvious 'hyphal prints' on the test papers, indicating the ability of mycorrhizal hyphae to release acid phosphatase.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.42277097,41425007)the High-level Team Project of China Agricultural University,Chongqing Technology Innovation and Application Development Project(cstc2021jscx-cylh0024)the Deutsche Forschungsgeminschaft(DFG)-328017493/GRK 2366(No.Sino-German IRTG AMAIZE-P)。
文摘Atmospheric nitrogen(N)deposition has experienced significant change because of anthropogenic emissions,thereby exert-ing a pronounced impact on global ecosystem services.With the rapid development of industry and agriculture and the swift expansion of urban areas in China since the 1980s,reactive nitrogen(Nr)emissions and N deposition have substantially increased.In pursuit of im-proving air quality,China has implemented a series of environmental protection policies and undertaken diverse measures to reduce pol-lutant emissions.This paper is a review of multivariate data sources of atmospheric N deposition based on the results of literature from 1980 to 2023,and the original data from 1980 to 2020 are summarized,counted and calculated.The main findings are as follows:1)the annual average atmospheric N deposition ranged from approximately 20-40 kg/(ha·yr),with the variability primarily linked to different assessment methods;2)regional disparities were evident in the spatial distribution of N deposition,with elevated values concentrated in areas with intense Nr emissions;3)atmospheric N deposition significantly declined after 2010,particularly the deposition of oxidized N,while reduced N deposition remained stable.These results reflect the effects of China's serious control policies on nitrogen oxide(NO.)emissions and strengthen the importance of agricultural NH3 emission mitigation.This study contributes to a comprehensive understand-ing of the N dynamics in the emission-deposition process,and provides a scientific foundation for the research of environmental protec-tion,climate change,and sustainable development.
基金supported by the National Basic Research Program of China(2014CB954202)the National Natural Science Foundation of China(40425007,41071151,31421092)the Suzhou University Startup Foundation for Doctor(2015jb04)
文摘With rapid economic growth in China, anthropogenic reactive nitrogen (Nr) emissions have more than doubled over the last two or three decades. Atmospheric Nr pollution is an environmental concern in China especially in megacities such as Beijing. In order to identify the impact of emission sources on atmospheric Nr pollution, we measured atmospheric Nr concentrations and their isotopic composition (δ15N) dynamics at three typical sites: landfill, pig farm and road traffic sites in Beijing from April 2010 to March 2011. Passive samplers were used for monitoring ammonia (NH3) and nitrogen dioxide (NO2), two major Nr species, while their δ15N values were measured by a diffusion method combined with mass spectrometer approach. The raw water pool of the landfill and fattening house of the pig farm were important NH3 sources with mean NH3 concentrations being 2,829 and 2,369 μg/m3, respectively, while the road traffic site was a minor NH3 source (10.6 μg/m3). NH3 concentrations at sites besides the landfill and roads were high in summer and low in winter due to the annual variation of temperature and the change of emission source intensity. In contrast, the NH3 concentrations inside the pig farm house were high in winter and low in summer, for the barn windows were open in summer and closed in winter. The mean NO2 concentrations were 89.8, 32.9 and 23.0 μg/m3 at the road traffic, the landfill and pig farm sites, respectively. Due to vehicle fuel combustion, NO2 concentration at the road traffic was the highest among the three sources, and the road traffic was a main NO2 emission source. PM10, pNH4* and pNO3- concentrations in particulate matter were higher in summer than in winter (except PM10 for the pig farm). The δ15NH3 values ranged from -19.14‰ to 7.82‰, with an average of-0.05‰ for the landfill site, and the lowest values were observed in June and July. The δ15NH3 values for the pig farm site ranged from -29.78‰ to-14.05‰ with an average of-24.51‰, and the 515NH3 values were more negative in summer than in the other seasons. The (515NO2 values were -9.63%o to 7.04‰ with an average of -3.72%0 for the road traffic site. The δ15NO2 values were more negative in summer than those in the other seasons. The different δ15N values for the various Nr species in different sources may serve as important indicators for identifying atmospheric Nr sources in megacities. The results may also provide the theoretical basis for research on the atmospheric N deposition and its sources.
基金supported by the National Basic Research Program of China (Grant No. 2009CB11860)the National Natural Science Foundation of China (Grant Nos. 31071852,30771289,and 30821003)the Special Fund for Agriculture Profession (Grant No. 200803030)
文摘The use of nitrogen(N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact.Sustaining food production by increasing N use efficiency in intensive cropping systems has become a major concern for scientists,environmental groups,and agricultural policymakers worldwide.In high-yielding maize systems the major method of N loss is nitrate leaching.In this review paper,the characteristic of nitrate movement in the soil,N uptake by maize as well as the regulation of root growth by soil N availability are discussed.We suggest that an ideotype root architecture for efficient N acquisition in maize should include(i) deeper roots with high activity that are able to uptake nitrate before it moves downward into deep soil;(ii) vigorous lateral root growth under high N input conditions so as to increase spatial N availability in the soil;and(iii) strong response of lateral root growth to localized nitrogen supply so as to utilize unevenly distributed nitrate especially under limited N conditions.
基金supported by the National Basic Research Program of China (2011CB100305,2009CB11860)the National Natural Science Foundation of China (31121062,31172015)the Special Fund for Agriculture Profession (201103003)
文摘Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and reduction in fertilizer input achievable by using high-yielding and nutrient-efficient cultivars is unclear.In the present study,we evaluated the yield and nitrogen use efficiency(NUE) of 40 commercial maize hybrids at five locations in North and Northeast China in 2008 and 2009.The effect of interaction between genotype and nitrogen(N) input on maize yield was significant when the yield reduction under low-N treatment was 25%-60%.Based on the average yields achieved with high or low N application,the tested cultivars were classified into four types based on their NUE:efficient-efficient(EE) were efficient under both low and high N inputs,high-N efficient(HNE) under only high N input,low-N efficient(LNE) under only low N input,and nonefficient-nonefficient under neither low nor high N inputs.Under high N application,EE and HNE cultivars could potentially increase maize yield by 8%-10% and reduce N input by 16%-21%.Under low N application,LNE cultivars could potentially increase maize yield by 12%.We concluded that breeding for N-efficient cultivars is a feasible strategy to increase maize yield and/or reduce N input.
基金supported by the National Basic Research Program of China (Grant No. 2009CB11860)the National Natural Science Foundation of China (Grant Nos. 31071852 and 30821003)the Special Fund for Agriculture Profession (Grant No. 201103003)
文摘Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L^-1, HN) and low N (0.04 mmol L^-1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.
基金supported by the National Natural Science Foundation of China (Grant Nos. 31121062 and 31071852)the National Basic Research Program of China (Grant No. 2009CB11860)the Special Fund for the Agricultural Profession (Grant No. 201103003)
文摘Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulation of maize root growth could improve the productivity of the two intercropping systems. Two near isogenic maize hybrids (the larger-rooted T149 and smaller-rooted T222) were intercropped with faba bean and wheat, under conditions of high- and low-P availability. The larger-rooted T149 showed greater competitive ability than the smaller-rooted T222 in both maize/faba bean and maize/wheat intercropping systems. The higher competitive ability of T149 improved the productivity of the maize/faba bean intercropping system in P-sufficient conditions. In maize/wheat intercropping systems, root growth, shoot biomass, and P uptake of maize were inhibited by wheat, regardless of the P-supply. Compared with T222, the larger-rooted T149 suffered less in the intercropping systems. The total biomass of the maize/wheat intercropping system was higher for wheat/T149 than for wheat/T222 under low-P conditions. These data suggested that genetic improvement of maize root size could enhance maize growth and its ability to compete for P resources in maize/faba bean and maize/wheat intercropping systems. In addition, depending on the P availability, larger maize roots could increase the productivity of intercropping systems.
文摘Phosphorus (P)-deficiency in rice (Oryza. Sativa. L) may cause yield reductions. This research has been conducted to map quantitative trait loci (QTLs) for tolerance to low phosphorus stress in a doubled haploid (DH) population. By using the linkage map of this population, the OTLs for relative dry weight, relative P content and relative P utilization efficiency have been located. The results indicate that one RFLP marker located on chromosome 6 is closely associated with relative root dry weight, relative shoot dry weight and relative total dry weight, which explain 24.9%, 20.5% and 25.2% of the total phenotypic variations, respectively. Two QTLs affect relative P uptake content, which account for 20.7% of the total phenotypic variations. One micro-effect QTL has been found to be associated with relative P utilization efficiency. It is suggested that the P uptake efficiency is more associated with P efficiency. Among the secondary physiological indices of P uptake efficiency, the root dry weight is
基金supported by the National Natural Science Foundation of China (30890133)the National Basic Research Program of China (2011CB100405)China Agricultural University Specialized Research Fund to Support Ph.D. Candidates Innovative and Independent Scientific Subject(KYCX2010075)
文摘Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.
文摘A pot experiment has been carried out under controlled conditions to study the possibility of applying the technique of in vivo staining for acid phosphatase activity on the roots of mycorrhizal plants and arbuscular mycorrhizal hyphae. The pots had 5 compartments. The central root compartment was separated from the two adjacent hyphal compartments using nylon nets of 30 μm mesh, and the two hyphal compartments were separated from the two outermost compartments with 0.45 μm membranes. Red clover was grown in the root compartment and was either inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae or uninoculated. Sodium phytate was applied to all compartments. The results show that AMF can increase acid phosphatase activity of clover roots. The plant roots acquired deep red 'mycorrhizal prints'. The external hyphae also had obvious 'hyphal prints' on the test papers, indicating the ability of mycorrhizal hyphae to release acid phosphatase.