3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental...3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.展开更多
Solidification behavior of continuously cast high carbon steel billets was investigated with an objective of producing high quality billets by determining the optimum final electromagnetic stirring (F-EMS) parameter...Solidification behavior of continuously cast high carbon steel billets was investigated with an objective of producing high quality billets by determining the optimum final electromagnetic stirring (F-EMS) parameters. Char- acteristics of centerline segregation were analyzed for lots of billet samples collected from the plant through obtaining the carbon concentrations of drill chips, which were correlated with the operating parameters of the caster and stir- rers, but a problem occurred that segregation control results of trial billets with the same casting and stirring param- eters often have drastic fluctuations. An attempt was made to find out the induced reasons of this problem by meas uring the electromagnetic torque, analyzing the secondary dendrite arm spacing (SDAS) and the corresponding cool- ing rate of the typical specimens, and observing the longitudinal profile of etched billet samples. Then a simple dy- namic secondary cooling model was developed based on the solidified shell thickness control mode, by which the maximum carbon segregation index was reduced effectively, and thus the segregation fluctuation problem was basi- cally solved. Finally, the most favourable stirring parameters were determined as the casting speed of 1.65 m/rain, the liquid core thickness of 40 mm, stirring current of 360 A and frequency of 12 Hz.展开更多
The solidification process of AISI 304 stainless steel during cooling at a rate of 0.05 K/s has been observed in situ using a confocal scanning laser microscope (CSLM). The results show that the 8 phase appeared fir...The solidification process of AISI 304 stainless steel during cooling at a rate of 0.05 K/s has been observed in situ using a confocal scanning laser microscope (CSLM). The results show that the 8 phase appeared first in liquid steel, as the temperature decreased, the γ phase precipitated prior at δ-grain boundary at 1452. 2 ℃, the liquid steel disappeared at 1 431.3 ℃, and then the γ phase precipitated on the δ ferrite. Based on the Scheil-Gulliver solidification model, the solidification processes of AISI 304 stainless steel are simulated using the Scheil model in Thermo Calc, and the simulation results agree well with the results observed in the experiment.展开更多
基金Project(2012AA03A505)supported by the High-Tech Research and Development Program of ChinaProject(51474023)supported by the National Natural Science Foundation of China
文摘3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.
基金Sponsored by National Natural Science Foundation of China(51174024)
文摘Solidification behavior of continuously cast high carbon steel billets was investigated with an objective of producing high quality billets by determining the optimum final electromagnetic stirring (F-EMS) parameters. Char- acteristics of centerline segregation were analyzed for lots of billet samples collected from the plant through obtaining the carbon concentrations of drill chips, which were correlated with the operating parameters of the caster and stir- rers, but a problem occurred that segregation control results of trial billets with the same casting and stirring param- eters often have drastic fluctuations. An attempt was made to find out the induced reasons of this problem by meas uring the electromagnetic torque, analyzing the secondary dendrite arm spacing (SDAS) and the corresponding cool- ing rate of the typical specimens, and observing the longitudinal profile of etched billet samples. Then a simple dy- namic secondary cooling model was developed based on the solidified shell thickness control mode, by which the maximum carbon segregation index was reduced effectively, and thus the segregation fluctuation problem was basi- cally solved. Finally, the most favourable stirring parameters were determined as the casting speed of 1.65 m/rain, the liquid core thickness of 40 mm, stirring current of 360 A and frequency of 12 Hz.
基金Item Sponsored by National Natural Science Foundation of China(50434040)
文摘The solidification process of AISI 304 stainless steel during cooling at a rate of 0.05 K/s has been observed in situ using a confocal scanning laser microscope (CSLM). The results show that the 8 phase appeared first in liquid steel, as the temperature decreased, the γ phase precipitated prior at δ-grain boundary at 1452. 2 ℃, the liquid steel disappeared at 1 431.3 ℃, and then the γ phase precipitated on the δ ferrite. Based on the Scheil-Gulliver solidification model, the solidification processes of AISI 304 stainless steel are simulated using the Scheil model in Thermo Calc, and the simulation results agree well with the results observed in the experiment.