The time arrival structure of acoustic pulse signals propagating in ocean waveguides is of great significance for underwater acoustic communication and navigation. Using the deep-sea sound propagation data from the ex...The time arrival structure of acoustic pulse signals propagating in ocean waveguides is of great significance for underwater acoustic communication and navigation. Using the deep-sea sound propagation data from the experiments respectively conducted in the East Indian Ocean(EIO) and the South China Sea(SCS) with explosion sources near the sound channel axis(SCA), long-range transmission loss(TL) and time arrival structure of acoustic pulses for different sound speed profiles(SSPs) are compared. In the EIO environment, sound energy transmitting along the SCA is relatively large, and the corresponding signals arrive first, whereas signals propagating away from the SCA arrive late. In the full receiving depth, it shows a branch structure where the waveform near the SCA arrives earlier than other depths, which is totally different with the characteristics of the sound pulse in the SCS. Combined with the parametric mathematical model of deep-sea sound channel, the influence mechanism of SSP on the time arrival structure of long-range pulse propagation is theoretically analyzed, which well explains the phenomenon observed in the two experiments.展开更多
In this study, the effect of the tropical North Atlantic (TNA) sea surface temperature (SST) variation in inducing the circulation anomaly in the Indo-East Asian monsoon (IEAM) region is investigated through the obser...In this study, the effect of the tropical North Atlantic (TNA) sea surface temperature (SST) variation in inducing the circulation anomaly in the Indo-East Asian monsoon (IEAM) region is investigated through the observational analysis and numerical model-ing. The observational analysis shows that the TNA summer SST is positively correlated with the preceding winter Ni?o3 SST and is simultaneously correlated with the circulation in the IEAM region. The simultaneous circulation pattern resembles that of the ENSO-decaying summer. The positive correlation between the TNA SST and the Ni?o3 region SST is primarily ascribed to the surface latent heat flux and short wave radiation anomalies induced by the ENSO teleconnection. Coupled general circulation model experiments show that, while including the air-sea coupling in the Atlantic, the model can reproduce the main features of the IEAM circulation, such as an anomalous anticyclone over the western North Pacific (WNP) and southerly anomalies over southeast China. While the climatological Atlantic SST is prescribed, the circulation over the WNP displays a significantly dif-ferent pattern, with an eastward migration of the WNP anticyclone and the associated northerly anomalies over southeast China. It is argued that anticyclonic shear and Ekman divergence associated with the atmospheric Kelvin wave response to the TNA warm SSTA forcing is the primary mechanism for the generation of the anomalous anticyclone in WNP. The results presented in this study provide a teleconnection pattern between TNA and short-term climate variability in IEAM region.展开更多
In January 2013,a severe fog and haze event(FHE)of strong intensity,long duration,and extensive coverage occurred in eastern China.The present study investigates meteorological conditions for this FHE by diagnosing bo...In January 2013,a severe fog and haze event(FHE)of strong intensity,long duration,and extensive coverage occurred in eastern China.The present study investigates meteorological conditions for this FHE by diagnosing both its atmospheric background fields and daily evolution in January 2013.The results show that a weak East Asian winter monsoon existed in January2013.Over eastern China,the anomalous southerly winds in the middle and lower troposphere are favorable for more water vapor transported to eastern China.An anomalous high at 500 hPa suppresses convection.The weakened surface winds are favorable for the fog and haze concentrating in eastern China.The reduction of the vertical shear of horizontal winds weakens the synoptic disturbances and vertical mixing of atmosphere.The anomalous inversion in near-surface increases the stability of surface air.All these meteorological background fields in January 2013 were conducive to the maintenance and development of fog and haze over eastern China.The diagnosis of the daily evolution of the FHE shows that the surface wind velocity and the vertical shear of horizontal winds in the middle and lower troposphere can exert dynamic effects on fog and haze.The larger(smaller)they are,the weaker(stronger)the fog and haze are.The thermodynamic effects include stratification instability in middle and lower troposphere and the inversion and dew-point deficit in near-surface.The larger(smaller)the stratification instability and the inversion are,the stronger(weaker)the fog and haze are.Meanwhile,the smaller(larger)the dewpoint deficit is,the stronger(weaker)the fog and haze are.Based on the meteorological factors,a multi-variate linear regression model is set up.The model results show that the dynamic and thermodynamic effects on the variance of the fog and haze evolution are almost the same.The contribution of the meteorological factors to the variance of the daily fog and haze evolution reaches 0.68,which explains more than 2/3 of the variance.展开更多
Fog and haze are two kinds of weather phenomena.Fog is referred to as water droplets suspended in the air near earth’s surface,which reduces the visibility to less than 1 km.A fog consisting of ice crystals is called...Fog and haze are two kinds of weather phenomena.Fog is referred to as water droplets suspended in the air near earth’s surface,which reduces the visibility to less than 1 km.A fog consisting of ice crystals is called ice fog.Haze is the particles suspended in the air that reduce visibility by scattering the light,and is usually a mixture of aerosol and photochemical smog.Fog and haze usually coexist.The occurrence and evolution of haze and fog are closely related with meteorological conditions.展开更多
This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC)....This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.展开更多
A dipole structure anomaly in summer Arctic atmospheric variability is identified in this study, which is characterized by the second mode of empirical orthogonal function (EOF) analysis of summer monthly mean sea lev...A dipole structure anomaly in summer Arctic atmospheric variability is identified in this study, which is characterized by the second mode of empirical orthogonal function (EOF) analysis of summer monthly mean sea level pressure (SLP) north of 70°N, accounting for 12.94% of the variance. The dipole anom- aly shows a quasi-barotropic structure with opposite anomalous centers over the Canadian Arctic and the Beaufort Sea and between the Kara Sea and the Laptev Sea. The dipole anomaly reflects alternating variations in location of the polar vortex between the western and eastern Arctic regions. The positive phase of the dipole anomaly corresponds to the center of the polar vortex over the western Arctic, leading to an increase in summer mean rainfall in Northeast China. The dipole anomaly has a pre- dominant 6-year periodicity, and shows interdecadal variations in recent decades.展开更多
Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of ...Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of Earth Sciences at the Chinese Academy of Sciences. Major results are summarized in this paper. The East Asian monsoon directly affects aerosol transport and provides a favorable background circulation for the occurrence and development of persistent fog-haze weather. Spatial features of aerosol transport and distribution are also influenced by the East Asian monsoon on seasonal, inter-annual, and decadal scales. High moisture levels in monsoon regions also affect aerosol optical and radiative properties. Observation analyses indicate that cloud physical properties and precipitation are significantly affected by aerosols in China with aerosols likely suppressing local light and moderate rainfall, and intensifying heavy rainfall in southeast coastal regions. However, the detailed mechanisms behind this pattern still need further exploration. The decadal variation in the East Asian monsoon strongly affects aerosol concentrations and their spatial patterns. The weakening monsoon circulation in recent decades has likely helped to increase regional aerosol concentrations. The substantial increase in Chinese air pollutants has likely decreased the temperature difference between land and sea, which favors intensification of the weakening monsoon circulation. Constructive suggestions regarding future studies on aerosols and monsoons were proposed in this forum and key uncertain issues were also discussed.展开更多
An interdecadal shift in summer (June―August) sea surface temperature (SST) variations during the period of 1968―2002 was identified in the late 1980s, which is characterized by a phase alternating from negative to ...An interdecadal shift in summer (June―August) sea surface temperature (SST) variations during the period of 1968―2002 was identified in the late 1980s, which is characterized by a phase alternating from negative to positive phases of the leading mode of the empirical orthogonal function (EOF) analysis of the summer monthly mean SST in the Pacific domain 100°―180°E and 0°―40°N, accounting for 30.5% of the total variance. During the period of 1968―1987, the leading mode with a mean negative phase state (mean standard deviation = ?0.586) controlled SST variability in the western North Pacific. Correspondingly, negative SST anomalies occupied the western North Pacific south of Japan and Chinese marginal seas. During the period of 1988―2002, the leading mode shifted to its strong positive polarity (mean standard deviation = 0.781), thus positive SST anomalies appeared in the western North Pacific. Accompanied by the interdecadal shift in summer mean SST, summer mean rainfall increased in southern and southeastern China during the late period, particularly in southeastern China where increase in summer mean rainfall exceeded 40 mm, at the 0.05 significance level.展开更多
As the summit of the Antarctic Plateau, Dome A has been received international attentions.In this paper, observational data of an automatic weather station (AWS) at Dome A in 2005–2007 were used to analyze the season...As the summit of the Antarctic Plateau, Dome A has been received international attentions.In this paper, observational data of an automatic weather station (AWS) at Dome A in 2005–2007 were used to analyze the seasonal variations of air temperatures near the ground and snow temperatures within a depth of 10 m. Analyses on the air temperatures show a typical feature of the coreless winter, and strong inversion maintains during the long winter. Accordingly the stratification near the ground is dominated by the near-neutral stable states. Seasonal fluctuations of the snow temperature decrease in amplitude and lag in phase with depth increasing, which leads to distinct seasonal temperature profiles within the depth of 10 m. Measurements show the mean annual air temperature near ground is about 5°C higher than the 10 m firn temperature due to the strong inversion near the ground. However, our estimation of the annual mean of air temperature at the ground based on the boundary layer theory is close to the mean 10 m firn temperature. The lowest air temperature (–82.7°C) currently measured at the Dome A is not the lowest one ever recorded in Antarctica, but the extremely low mean 10 m firn temperature (–58.2°C) indicates very low ground temperature. Given the prominent inversion near the ground, it is expected that Dome A might house the lowest ground temperature on the planet.展开更多
基金supported by the National Natural Science Foundation of China (11874061,U22A2012)the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021023)。
文摘The time arrival structure of acoustic pulse signals propagating in ocean waveguides is of great significance for underwater acoustic communication and navigation. Using the deep-sea sound propagation data from the experiments respectively conducted in the East Indian Ocean(EIO) and the South China Sea(SCS) with explosion sources near the sound channel axis(SCA), long-range transmission loss(TL) and time arrival structure of acoustic pulses for different sound speed profiles(SSPs) are compared. In the EIO environment, sound energy transmitting along the SCA is relatively large, and the corresponding signals arrive first, whereas signals propagating away from the SCA arrive late. In the full receiving depth, it shows a branch structure where the waveform near the SCA arrives earlier than other depths, which is totally different with the characteristics of the sound pulse in the SCS. Combined with the parametric mathematical model of deep-sea sound channel, the influence mechanism of SSP on the time arrival structure of long-range pulse propagation is theoretically analyzed, which well explains the phenomenon observed in the two experiments.
基金supported by the National Basic Research Program of China (2004CB418302)the National Natural Science Foundation of China (40921003)the International S&T Cooperation Project of the Ministry of Science and Technology of China (2009DFA21430)
文摘In this study, the effect of the tropical North Atlantic (TNA) sea surface temperature (SST) variation in inducing the circulation anomaly in the Indo-East Asian monsoon (IEAM) region is investigated through the observational analysis and numerical model-ing. The observational analysis shows that the TNA summer SST is positively correlated with the preceding winter Ni?o3 SST and is simultaneously correlated with the circulation in the IEAM region. The simultaneous circulation pattern resembles that of the ENSO-decaying summer. The positive correlation between the TNA SST and the Ni?o3 region SST is primarily ascribed to the surface latent heat flux and short wave radiation anomalies induced by the ENSO teleconnection. Coupled general circulation model experiments show that, while including the air-sea coupling in the Atlantic, the model can reproduce the main features of the IEAM circulation, such as an anomalous anticyclone over the western North Pacific (WNP) and southerly anomalies over southeast China. While the climatological Atlantic SST is prescribed, the circulation over the WNP displays a significantly dif-ferent pattern, with an eastward migration of the WNP anticyclone and the associated northerly anomalies over southeast China. It is argued that anticyclonic shear and Ekman divergence associated with the atmospheric Kelvin wave response to the TNA warm SSTA forcing is the primary mechanism for the generation of the anomalous anticyclone in WNP. The results presented in this study provide a teleconnection pattern between TNA and short-term climate variability in IEAM region.
基金supported by the National Natural Science Foundation of China(Grant No.41221064)the International S&T Cooperation Project othe Ministry of Science and Technology of China(Grant No.2009-DFA21430)
文摘In January 2013,a severe fog and haze event(FHE)of strong intensity,long duration,and extensive coverage occurred in eastern China.The present study investigates meteorological conditions for this FHE by diagnosing both its atmospheric background fields and daily evolution in January 2013.The results show that a weak East Asian winter monsoon existed in January2013.Over eastern China,the anomalous southerly winds in the middle and lower troposphere are favorable for more water vapor transported to eastern China.An anomalous high at 500 hPa suppresses convection.The weakened surface winds are favorable for the fog and haze concentrating in eastern China.The reduction of the vertical shear of horizontal winds weakens the synoptic disturbances and vertical mixing of atmosphere.The anomalous inversion in near-surface increases the stability of surface air.All these meteorological background fields in January 2013 were conducive to the maintenance and development of fog and haze over eastern China.The diagnosis of the daily evolution of the FHE shows that the surface wind velocity and the vertical shear of horizontal winds in the middle and lower troposphere can exert dynamic effects on fog and haze.The larger(smaller)they are,the weaker(stronger)the fog and haze are.The thermodynamic effects include stratification instability in middle and lower troposphere and the inversion and dew-point deficit in near-surface.The larger(smaller)the stratification instability and the inversion are,the stronger(weaker)the fog and haze are.Meanwhile,the smaller(larger)the dewpoint deficit is,the stronger(weaker)the fog and haze are.Based on the meteorological factors,a multi-variate linear regression model is set up.The model results show that the dynamic and thermodynamic effects on the variance of the fog and haze evolution are almost the same.The contribution of the meteorological factors to the variance of the daily fog and haze evolution reaches 0.68,which explains more than 2/3 of the variance.
文摘Fog and haze are two kinds of weather phenomena.Fog is referred to as water droplets suspended in the air near earth’s surface,which reduces the visibility to less than 1 km.A fog consisting of ice crystals is called ice fog.Haze is the particles suspended in the air that reduce visibility by scattering the light,and is usually a mixture of aerosol and photochemical smog.Fog and haze usually coexist.The occurrence and evolution of haze and fog are closely related with meteorological conditions.
基金supported by the National Key Project for Basic Science Development (Grant No. 2015CB453203)the National Key Research and Development Program (Grant No. 2016YFA0600602)the National Natural Science Foundation of China (Grant No. 41661144017)
文摘This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.
基金Supported by the National Key Basic Research and Development Project of China (Grant No. 2004CB418300)the National Basic Research Program of China (973 Program) (Grant No. 2007CB411505)+3 种基金Chinese COPES project (GYHY200706005)the National Natural Science Foundation of China (Grant No. 40475030)R. D’Arrigo acknowledges support from the National Science Foundation (Grant No. OCE 04-02474)Lamont-Doherty Earth Observatory Contrib. No. 7126
文摘A dipole structure anomaly in summer Arctic atmospheric variability is identified in this study, which is characterized by the second mode of empirical orthogonal function (EOF) analysis of summer monthly mean sea level pressure (SLP) north of 70°N, accounting for 12.94% of the variance. The dipole anom- aly shows a quasi-barotropic structure with opposite anomalous centers over the Canadian Arctic and the Beaufort Sea and between the Kara Sea and the Laptev Sea. The dipole anomaly reflects alternating variations in location of the polar vortex between the western and eastern Arctic regions. The positive phase of the dipole anomaly corresponds to the center of the polar vortex over the western Arctic, leading to an increase in summer mean rainfall in Northeast China. The dipole anomaly has a pre- dominant 6-year periodicity, and shows interdecadal variations in recent decades.
基金the“33rd Frontier Science and Technology Forum”sponsored by the Chinese Academy of Sciences(Grant No.L12220036)the National Basic Research Program of China(Grant No.2013CB955803)the National Natural Science Foundation of China(Grant No.41205055)
文摘Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of Earth Sciences at the Chinese Academy of Sciences. Major results are summarized in this paper. The East Asian monsoon directly affects aerosol transport and provides a favorable background circulation for the occurrence and development of persistent fog-haze weather. Spatial features of aerosol transport and distribution are also influenced by the East Asian monsoon on seasonal, inter-annual, and decadal scales. High moisture levels in monsoon regions also affect aerosol optical and radiative properties. Observation analyses indicate that cloud physical properties and precipitation are significantly affected by aerosols in China with aerosols likely suppressing local light and moderate rainfall, and intensifying heavy rainfall in southeast coastal regions. However, the detailed mechanisms behind this pattern still need further exploration. The decadal variation in the East Asian monsoon strongly affects aerosol concentrations and their spatial patterns. The weakening monsoon circulation in recent decades has likely helped to increase regional aerosol concentrations. The substantial increase in Chinese air pollutants has likely decreased the temperature difference between land and sea, which favors intensification of the weakening monsoon circulation. Constructive suggestions regarding future studies on aerosols and monsoons were proposed in this forum and key uncertain issues were also discussed.
基金Supported by the National Key Basic Research and Development Project of China (Grant Nos. 2004CB418302 and 2007CB411505)the National Natural Science Foundation of China (Grant Nos. 40475030 and 40225012)
文摘An interdecadal shift in summer (June―August) sea surface temperature (SST) variations during the period of 1968―2002 was identified in the late 1980s, which is characterized by a phase alternating from negative to positive phases of the leading mode of the empirical orthogonal function (EOF) analysis of the summer monthly mean SST in the Pacific domain 100°―180°E and 0°―40°N, accounting for 30.5% of the total variance. During the period of 1968―1987, the leading mode with a mean negative phase state (mean standard deviation = ?0.586) controlled SST variability in the western North Pacific. Correspondingly, negative SST anomalies occupied the western North Pacific south of Japan and Chinese marginal seas. During the period of 1988―2002, the leading mode shifted to its strong positive polarity (mean standard deviation = 0.781), thus positive SST anomalies appeared in the western North Pacific. Accompanied by the interdecadal shift in summer mean SST, summer mean rainfall increased in southern and southeastern China during the late period, particularly in southeastern China where increase in summer mean rainfall exceeded 40 mm, at the 0.05 significance level.
基金supported by the National Science & Technology Pillar Program (Grant No. 2006BAC 06B05)Treasury Special Program of China (Grant No. GYHY200706005)+1 种基金the National Natural Science Foundation of China (Grant No.40921003)the International S&T Cooperation Project of the Ministry of Science and Technology of China (Grant No.2009DFA21430)
文摘As the summit of the Antarctic Plateau, Dome A has been received international attentions.In this paper, observational data of an automatic weather station (AWS) at Dome A in 2005–2007 were used to analyze the seasonal variations of air temperatures near the ground and snow temperatures within a depth of 10 m. Analyses on the air temperatures show a typical feature of the coreless winter, and strong inversion maintains during the long winter. Accordingly the stratification near the ground is dominated by the near-neutral stable states. Seasonal fluctuations of the snow temperature decrease in amplitude and lag in phase with depth increasing, which leads to distinct seasonal temperature profiles within the depth of 10 m. Measurements show the mean annual air temperature near ground is about 5°C higher than the 10 m firn temperature due to the strong inversion near the ground. However, our estimation of the annual mean of air temperature at the ground based on the boundary layer theory is close to the mean 10 m firn temperature. The lowest air temperature (–82.7°C) currently measured at the Dome A is not the lowest one ever recorded in Antarctica, but the extremely low mean 10 m firn temperature (–58.2°C) indicates very low ground temperature. Given the prominent inversion near the ground, it is expected that Dome A might house the lowest ground temperature on the planet.